
KPP: The Kinetic PreProcessor
Release 3.1.1

A. Sandu, R. Sander, M. Long, H. Lin, R. Yantosca, L. Estrada, L. Shen, and D. J. Jacob

Apr 30, 2024

Getting Started

1 KPP revision history 3
1.1 KPP 3.1.1 . 3
1.2 KPP 3.1.0 . 4
1.3 KPP 3.0.2 . 4
1.4 KPP 3.0.1 . 4
1.5 KPP 3.0.0 . 4
1.6 KPP 2.6.0 . 5
1.7 KPP 2.5.0 . 5
1.8 KPP 2.4.0 . 6
1.9 KPP 2.3.2_gc . 6
1.10 KPP 2.3.1_gc . 6

1

1.11 KPP 2.3.0_gc . 7
1.12 KPP 2.2.5_gc . 7
1.13 KPP 2.2.4_gc . 7
1.14 KPP 2.2.3 . 8
1.15 KPP 2.1 . 8
1.16 KPP 1.1-f90-alpha12 . 9

2 Installation 9
2.1 Download KPP from Github . 9
2.2 Define the KPP_HOME environment variable 9
2.3 Test if KPP dependencies are installed on your system 10
2.4 Build the KPP executable . 12
2.5 Instructions for MacOS X users . 13

3 Running KPP with an example stratospheric mechanism 16
3.1 1. Create a directory for the example . 17
3.2 2. Create a KPP Definition File . 17
3.3 3. Build the mechanism with KPP . 20
3.4 4. Build and run the small_strato example . 22
3.5 5. Cleanup . 23

4 Input for KPP 23
4.1 KPP sections . 24
4.2 KPP commands . 28
4.3 Inlined Code . 34
4.4 Auxiliary files and the substitution preprocessor 37
4.5 Controlling the Integrator with ICNTRL and RCNTRL 39

5 Output from KPP 43
5.1 The Fortran90 code . 44
5.2 The C code . 57
5.3 The Matlab code . 58
5.4 The Makefile . 60
5.5 The log file . 60
5.6 Output from the Integrators (ISTATUS and RSTATUS) 61

6 Information for KPP developers 63
6.1 KPP directory structure . 63
6.2 KPP environment variables . 65
6.3 KPP internal modules . 66
6.4 Adding new KPP commands . 67
6.5 Continuous integration tests . 68

7 Numerical methods 70
7.1 Rosenbrock methods . 71
7.2 Runge-Kutta (aka RK) methods . 76
7.3 Backward differentiation formulas . 78
7.4 Other integration methods . 78

2

8 BNF description of the KPP language 79

9 Acknowledgements 83

10 References 83

11 Known Bugs 83

12 Support 84

13 Contributing 84

14 Editing this User Guide 84
14.1 Quick start . 84
14.2 Learning reST . 85
14.3 Style guidelines . 85

References 86

Index 88

This site provides instructions for KPP, the Kinetic PreProcessor.

Contributions (e.g., suggestions, edits, revisions) would be greatly appreciated. See Editing this
User Guide and our contributing guidelines. If you find something hard to understand—let us
know!

1 KPP revision history

Only the major new features are listed here. For a detailed description of the changes, read
CHANGELOG.md1.

1.1 KPP 3.1.1

• Use newer Python packages to build ReadTheDocs documentation (see docs/
requirements.txt)

• Increased MAX_NO_OF_LINES and MAX_EQN in order to parse the entire MCM mechanism

• Now only add the extra Aout argument to Fun and Fun_Split for target language
Fortran90. This fixes a Matlab build error.

1 https://github.com/KineticPreProcessor/KPP/blob/main/CHANGELOG.md

3

https://github.com/KineticPreProcessor/KPP/blob/main/CHANGELOG.md

1.2 KPP 3.1.0

• Added #AUTOREDUCE to the list of KPP commands in the ReadTheDocs documentaton

• Added examples/mcm folder with minimal example for the Master Chemical Mechanism

• Added C-I test for MCM, based on the minimal example

• Removed obsolete input options from the code and documentation

1.3 KPP 3.0.2

• Added a .readthedocs.yaml file to the root folder to explicitly state the parameters
controlling the documentation build. This will “future-proof” the KPP documentation
against issues caused by software updates on the ReadTheDocs platform.

1.4 KPP 3.0.1

• Fixed a segmentation fault that occurred when using the #STOICMAT option by using
dynamically-sized variables EqnNr and MaxNr rather than static variables MAX_EQN and
MAX_SPECIES.

1.5 KPP 3.0.0

Attention: When you are upgrading from an older KPP version to KPP 3.0.0 or later
versions, a few minor changes in your code may be necessary:

• The atoms file is now called atoms.kpp. Thus, you have to change #INCLUDE atoms
to #INCLUDE atoms.kpp in your KPP input file.

• The utility functions ARR, ARR2, k_3rd and k_arr have been replaced by
the new set of the consistent functions ARR_abc, ARR_ab, ARR_ac, k3rd_jpl,
k3rd_jpl_activation, and k3rd_iupac. We recommend to upgrade to the new
functions, which all use the temperature from the temp variable in ROOT_Global.
f90. Alternatively, it is possible to copy the old functions into a separate file and
make them available via F90_RCONST .

• If you have been using ICNTRL(5) for maximal order in the lsode integrator, you
now have to use ICNTRL(10) instead. The index 5 in the ICNTRL array is now used
consistently for the maximum number of Newton iterations in all integrators.

• The dummy integrator none does not exist anymore. Thus, commands such as
#INTEGRATOR none should be removed.

• Updated the search for the flex library in src/Makefile.defs. The build process will
look for the flex: library file (either libfl.so or libfl.a file in several standard lo-
cations first. If not found, the build process will look in the path specfiied by environment
variable KPP_FLEX_LIB_DIR.

4

• Added content to ReadTheDocs pages and fixed several formatting issues.

• Fixed various minor issues in generating C-language code.

• Fixed various minor issues in generating Matlab-language code.

• C-I tests folders have been renamed for clarity. Also refactored the scripts used to sub-
mit C-I tests. Updated the Dockerfile to always request Ubuntu 20.04 and an AMD64
platform, so that the same libraries will always be used when running C-I tests on Azure
DevOps.

• Fortran type DOUBLE_COMPLEX is now replaced by COMPLEX(kind=dp).

• Fixed incorrect license metadata in .zenodo.json, which is used to auto-generate a DOI
with each KPP release on Github.

• Added extra free() statements in src/gen.c to avoid memory leaks.

• Fun() no longer uses Vdotout since it can be retrieved from Vdot.

• Fixed a bug in int/feuler.f90, where the wrong argument was being passed to routine
Fun.

1.6 KPP 2.6.0

• Added the rosenbrock_autoreduce integrator Lin et al. [2023].

1.7 KPP 2.5.0

• Merged updates from the GEOS-Chem development stream (versions KPP 2.2.4_gc, KPP
2.2.5_gc, KPP 2.3.0_gc, KPP 2.3.1_gc, KPP 2.3.2_gc) into the mainline KPP devel-
opment stream. Previously hardwired code has been removed and replaced with code
selectable via KPP commands.

• Added a new forward-Euler method integrator (feuler.f90).

• Added KPP commands #MINVERSION and #UPPERCASEF90 (along with corresponding
continuous integration tests).

• Added optional variables Aout and Vdotout to subroutine Fun().

• Replaced Fortran EQUIVALENCE statements with thread-safe pointer assignments (For-
tran90 only).

• Converted the KPP user manual to Sphinx/ReadTheDocs format (this now replaces the
prior ReadTheDocs documentaton).

• Added updates to allow KPP to be built on MacOS X systems.

• Added small_stratoC-I test that uses the exact same options as is described in Running
KPP with an example stratospheric mechanism.

5

1.8 KPP 2.4.0

• Added new integrators: beuler.f90, rosenbrock_mz.f90, rosenbrock_posdef.
f90, rosenbrock_posdef_h211b_qssa.f90.

• Several memory sizes (MAX_EQN, . . .) have been increased to allow large chemical mech-
anisms.

• Added new Makefile target: list.

• Added LaTeX User Manual.

• Now use ICNTRL(15) to decide whether or not to toggle calling the Update_SUN,
Update_RCONST, and Update_PHOTO routines from within the integrator.

1.9 KPP 2.3.2_gc

NOTE: Contains KPP Modifications specific to GEOS-Chem.

• Added workaround for F90 derived-type objects in inlined code (i.e. properly parse
State_Het%xArea, etc).

• Updated Github issue templates.

• MAX_INLINE (max # of inlined code lines to read) has been increased to 200000.

• Commented out the Update_Sun() functions in update_sun.F90, update_sun.F.
(NOTE: These have been restored in KPP 2.5.0).

• Default rate law functions are no longer written to gckpp_Rates.F90. (NOTE: These
have been restored in KPP 2.5.0).

1.10 KPP 2.3.1_gc

NOTE: KPP modifications specific to GEOS-Chem.

ALSO NOTE: ReadTheDocs documentation has been updated in KPP 2.5.0 to remove GEOS-
Chem specific information.

• Added documentation for ReadTheDocs.

• Added Github issue templates.

• README.md now contains the ReadTheDocs badge.

• README.md now points to kpp.readthedocs.io for documentation.

6

1.11 KPP 2.3.0_gc

NOTE: Contains KPP modifications specific to GEOS-Chem.

• Added README.md for the GC_updates branch.

• Added MIT license for the GC_updates branch.

• Add Aout argument to return reaction rates from SUBROUTINE Fun.

• Rename KPP/kpp_2.2.3_01 directory to KPP/kpp-code.

• Now write gckpp_Model.F90 and gckpp_Precision.F90 from gen.c.

• Do not write file creation & time to KPP-generated files (as this will cause Git to interpret
each file as a new file to be added).

• Now create Fortran-90 source code files with *.F90 instead of *.f90. (NOTE: In KPP
2.5.0, this can specified with the #UPPERCASEF90 command.)

• Remove calls to UPDATE_SUN and UPDATE_RCONST from all *.f90 integrators.
(NOTE: This has been restored in KPP 2.5.0.)

1.12 KPP 2.2.5_gc

NOTE: Contains KPP modifications specific to GEOS-Chem.

• Increase MAX_INLINE from 20000 to 50000

1.13 KPP 2.2.4_gc

NOTE: Contains KPP modifications specific to GEOS-Chem.

• Add MIT license files for GC_updates branch and update README.md accordingly

• Create README.md for main branch

• Set FLEX_LIB_DIR using FLEX_HOME env variable if it is defined.

• Added an exponential integrator.

• Added array to *_Monitor for family names (FAM_NAMES) string vector.

• Added functionality for Prod/Loss families using #FAMILIES token.

• Add scripts necessary to build a new mechanism for GEOS-Chem

• Completed the prod/loss option (token: #FLUX [on/off])

• Added OMP THREADPRIVATE to LinearAlgebra.F90

• Added rosenbrock_split.def integrator definition

• Added OMPThreadPrivate function for F77.

• Added declaration of A in ROOT_Function

7

• Added OMP THREADPRIVATE Functionality to F90 output.

• Completed the split-form Function for F90.

• Increase maximum number of equations.

• Increase MAX_FAMILIES parameter from 50 to 300

• Extend equation length limit to 200 characters.

• Also changed the species name for a family to the family name itself.

• Modified Families to minimize the number of additional species created

• Renamed and change indexing convention

• Removed unnecessary files

1.14 KPP 2.2.3

• A new function called k_3rd_iupac is available, calculating third-order rate coefficients
using the formula used by IUPAC [Atkinson et al., 2004].

• While previous versions of KPP were using yacc (yet another compiler compiler), the
current version has been modified to be compatible with the parser generator bison,
which is the successor of yacc.

• New Runge-Kutta integrators were added: kpp_dvode.f90, runge_kutta.f90,
runge_kutta_tlm.f90, sdirk_adj.f90, sdirk_tlm.f90.

• New Rosebrock method Rang3 was added.

• The new KPP command #DECLARE was added (see: #DECLARE).

• Several vector and array functions from BLAS (WCOPY, WAXPY, etc.) were replaced by
Fortran90 expressions.

1.15 KPP 2.1

• Described by Sandu and Sander [2006].

• Matlab is a new target language (see: The Matlab code).

• The set of integrators has been extended with a general Rosenbrock integrator, and the
corresponding tangent linear and adjoint methods.

• The KPP-generated Fortran90 code has a different file structure than the C or Fortran77
output (see: The Fortran90 code).

• An automatically generated Makefile facilitates the compilation of the KPP-generated
code (see: The Makefile).

• Equation tags provide a convenient way to refer to specific chemical reactions (see:
#LOOKAT and #MONITOR.

8

• The dummy index allows to test if a certain species occurs in the current chemistry mech-
anism. (see: #DUMMYINDEX)

• Lines starting with // are comment lines.

1.16 KPP 1.1-f90-alpha12

• First KPP version with Fortran90 [Sander et al., 2005].

2 Installation

This section can be skipped if KPP is already installed on your system.

2.1 Download KPP from Github

Clone the KPP source code from the KPP Github repository2:

$ cd $HOME
$ git clone https://github.com/KineticPreProcessor/KPP.git

This will create a directory named KPP in your home directory.

2.2 Define the KPP_HOME environment variable

Define the $KPP_HOME environment variable to point to the complete path where KPP is in-
stalled. Also, add the path of the KPP executable to the $PATH environment variable.

If you are using the Unix C-shell (aka csh), add add these statements to your $HOME/.cshrc
file:

setenv KPP_HOME $HOME/kpp
setenv PATH ${PATH}:$KPP_HOME/bin

and then apply the settings with:

$ source $HOME/.cshrc

If, on the other hand, you are using the Unix bash shell, add these statements to your $HOME/.
bashrc file:

export KPP_HOME=$HOME/kpp
export PATH=$PATH:$KPP_HOME/bin

and then apply the settings with:
2 https://github.com/KineticPreProcessor/KPP

9

https://github.com/KineticPreProcessor/KPP

$ source $HOME/.bashrc

Now if you type:

$ which kpp

the path to the executable file (kpp) will be displayed. This path should match the path specified
by $KPP_HOME/bin/kpp.

2.3 Test if KPP dependencies are installed on your system

KPP depends on several other Unix packages. Before using KPP for the first time, test if these
are installed on your system. If any of these packages are missing, you can install them with
your system’s package manager (e.g. apt for Ubuntu, yum for Fedora, homebrew for MacOS,
etc.), or with Spack3.

gcc

Important: You might have to follow some additional configuration and installation steps
regarding gcc on MacOS X systems.

KPP uses the GNU Compiler Collection4 (aka gcc) by default. A version of gcc comes pre-
installed with most Linux or MacOS systems. To test if gcc is installed on your system, type:

$ gcc --version

This will display the version information, such as:

gcc (GCC) 11.2.0
Copyright (C) 2021 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There␣
→˓is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR␣
→˓PURPOSE.

3 https://spack.readthedocs.io
4 https://gcc.gnu.org/

10

https://spack.readthedocs.io
https://gcc.gnu.org/

sed

The sed utility is used to search for and replace text in files. To test if sed has been installed,
type:

$ which sed

This will print the path to sed on your system.

bison

The bison utility parses the chemical mechanism file into a computer-readable syntax. To test
bison is installed, type:

$ which bison

This will print the path to bison on your system.

flex

Important: You might have to follow some additional configuration and installation steps
regarding flex on MacOS X systems.

The flex (the Fast Lexical Analyzer) creates a scanner that can recognize the syntax generated
by bison. To test if flex is installed, type:

$ which flex

This will print the path to flex on your system.

You will also need to specify the path to the flex library files (libfl.so or libfl.a) in order
to build the KPP executable. This can be done with the find command:

$ find /usr/ -name "*libfl*" -print

This will generate a list of file paths such as shown below. Look for the text libfl.:

/usr/include/libflashrom.h
/usr/lib/gthumb/extensions/libflicker.so
/usr/lib/gthumb/extensions/libflicker_utils.so
/usr/lib/libflashrom.so.1.0.0
/usr/lib/libfl.so # <---- This is the flex library file
... etc ...

Once you have located the directory where flex library file resides (which in this example is
/usr/lib), use it to define the KPP_FLEX_LIB_DIR environment variable in your .bashrc (or
.bash_aliases file if you have one):

11

export KPP_FLEX_LIB_DIR=/usr/lib

And then apply the changes with:

. ~/.bashrc

KPP will use the path specified by KPP_FLEX_LIB_DIR during the compilation sequence (de-
scribed in the next section).

2.4 Build the KPP executable

Change to the KPP/src directory:

$ cd $KPP_HOME/src

To clean a previously-built KPP installation, delete the KPP object files and all the examples
with:

$ make clean

To delete a previoulsy-built KPP executable as well, type:

$ make distclean

KPP will use gcc as the default compiler. If you would like to use a different compiler (e.g.
icc), then edit src/Makefile.defs to add your compiler name.

Create the KPP executable with:

$ make

You should see output similar to:

gcc -g -Wall -Wno-unused-function -I/usr/include -c code.c
gcc -g -Wall -Wno-unused-function -I/usr/include -c code_c.c
gcc -g -Wall -Wno-unused-function -I/usr/include -c code_f77.c
gcc -g -Wall -Wno-unused-function -I/usr/include -c code_f90.c
gcc -g -Wall -Wno-unused-function -I/usr/include -c code_matlab.c
gcc -g -Wall -Wno-unused-function -I/usr/include -c debug.c
gcc -g -Wall -Wno-unused-function -I/usr/include -c gen.c
gcc -g -Wall -Wno-unused-function -I/usr/include -c kpp.c
flex -olex.yy.c scan.l
bison -d -o y.tab.c scan.y
gcc -g -Wall -Wno-unused-function -I/usr/include -c lex.yy.c
gcc -g -Wall -Wno-unused-function -I/usr/include -c scanner.c
gcc -g -Wall -Wno-unused-function -I/usr/include -c scanutil.c
gcc -g -Wall -Wno-unused-function -I/usr/include -c y.tab.c
gcc -g -Wall -Wno-unused-function code.o code_c.o

(continues on next page)

12

(continued from previous page)
code_f77.o code_f90.o code_matlab.o debug.o gen.o kpp.o
lex.yy.o scanner.o scanutil.o y.tab.o -L/usr/lib -lfl -o kpp

This will create the executable file $KPP_HOME/bin/kpp.

2.5 Instructions for MacOS X users

When installing KPP on a MacOS X system, some additional configuration and installation
steps may be necessary.

Force MacOS to recognize the gcc compiler

On MacOS X, if you type:

$ gcc --version

you will probably see output similar to:

Apple clang version 13.1.6 (clang-1316.0.21.2.5)
Target: x86_64-apple-darwin21.5.0
Thread model: posix
InstalledDir: /Library/Developer/CommandLineTools/usr/bin

This is because MacOS X installs clang as gcc. To force MacOS X to recognize the gcc
compiler, follow these steps:

1. Use the homebrew package manager to install gcc:

$ brew install gcc

2. Type this command:

$ ls /usr/local/Cellar/gcc/*/bin/ | grep gcc

You should see output such as:

gcc-11*
gcc-ar-11*
gcc-nm-11*
gcc-ranlib-11*
... etc ...

This output indicates gccmajor version 11 has been installed, and that the gcc executable
is called gcc-11. (Your version may differ.)

3. Add the following code block to your .bashrc file (or to your .bash_aliases file if
you have one). This will define aliases that will override clang with gcc.

13

→˓#==
Compiler settings (MacOS)
#
NOTE: MacOSX installs Clang as /usr/bin/gcc, so we have to␣
→˓manually
force reference to gcc-11, g++-11, and gfortran-11, which␣
→˓HomeBrew
installs to /usr/local/bin. (bmy, 10/28/21)

→˓#==
alias gcc=gcc-11
alias g++=g++-11
alias gfortran=gfortran-11
export CC=gcc
export CXX=g++-11
export FC=gfortran-11
export F77=gfortran-11

Then apply the changes with:

$. ~/.bashrc

4. To check if your shell now recognizes the gcc compiler, type:

$ gcc --version

You should see output similar to:

gcc-11 (Homebrew GCC 11.3.0_1) 11.3.0
Copyright (C) 2021 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. ␣
→˓There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR␣
→˓PURPOSE.

This now indicates that your compiler is gcc and not clang.

Install flex with homebrew

If your MacOS X computer does not have the flex library installed, then you can install it with
homebrew:

$ brew install flex

Unlike Linux pacakge managers, which would install the flex library files in the path /usr/
lib/, homebrew will install it to a path such as /usr/local/Cellar/flex/X.Y.Z/lib/.

To find the version of flex that has been installed by homebrew, type:

14

$ ls /usr/local/Cellar/flex

and you will get a listing such as:

2.6.4_2

This indicates that the version of flex on your system is 2.6.4_2 (the _2 denotes the number
of bug-fix updates since version 2.6.4 was released).

The flex library files (libfl.so or libfl.a) will be found in lib/ subfolder. In this example,
the path will be:

/usr/local/Cellar/flex/2.6.4_2/lib

Knowing this, you can now define the KPP_FLEX_LIB_DIR environment variable as described
above:

export FLEX_LIB_DIR=/usr/local/Cellar/flex/2.6.4_2/lib

Request maximum stack memory

MacOS X has a hard limit of 65332 bytes for stack memory. This is much less memory than
what is available on GNU/Linux operating systems such as Ubuntu, Fedora, etc.

To make sure you are using the maximum amount of stack memory on MacOS X add this
command to your .bashrc file:

ulimit -s 65532

and then apply the change with:

$. ~/.bashrc

This stack memory limit means that KPP will not be able to parse mechanisms with more than
about 2000 equations and 1000 species. Because of this, we have added an #ifdef block to KPP
header file src/gdata.h to define the MAX_EQN and MAX_SPECIES parameters accordingly:

#ifdef MACOS
#define MAX_EQN 2000 // Max number of equations (MacOS only)
#define MAX_SPECIES 1000 // Max number of species (MacOS only)
#else
#define MAX_EQN 11000 // Max number of equations
#define MAX_SPECIES 6000 // Max number of species
#endif

If you find that KPP will not parse your mechanism, you can increase MAX_EQN and decrease
MAX_SPECIES (or vice-versa) as needed, and then rebuild the KPP executable.

15

Know that MacOS X is case-insenstive

If you have two files with identical names except for case (e.g. integrator.F90 and
integrator.f90) then MacOS X will not be able to tell them apart. Because of this, you
may encounter an error if you try to commit such files into Git, etc.

3 Running KPP with an example stratospheric mecha-
nism

Here we consider as an example a very simple Chapman-like mechanism for stratospheric chem-
istry:

𝑂2 + ℎ𝜈 −→ 2𝑂 (𝑅1)

𝑂 +𝑂2 −→ 𝑂3 (𝑅2)

𝑂3 + ℎ𝜈 −→ 𝑂 +𝑂2 (𝑅3)

𝑂 +𝑂3 −→ 2𝑂2 (𝑅4)

𝑂3 + ℎ𝜈 −→ 𝑂(1𝐷) +𝑂2 (𝑅5)

𝑂(1𝐷) +𝑀 −→ 𝑂 +𝑀 (𝑅6)

𝑂(1𝐷) +𝑂3 −→ 2𝑂2 (𝑅7)

𝑁𝑂 +𝑂3 −→ 𝑁𝑂2 +𝑂2 (𝑅8)

𝑁𝑂2 +𝑂 −→ 𝑁𝑂 +𝑂2 (𝑅9)

𝑁𝑂2 + ℎ𝜈 −→ 𝑁𝑂 +𝑂 (𝑅10)

We use the mechanism with the purpose of illustrating the KPP capabilities. However, the
software tools are general and can be applied to virtually any kinetic mechanism.

We focus on Fortran90. Particularities of the C and Matlab languages are discussed in the
#LANGUAGE section.

Important: Most of the recent KPP developments described in this manual have been added
into the Fortran90 language. We look to members of the KPP user community to spearhead
development in C, Matlab, and other languages.

The KPP input files (with suffix .kpp) specify the target model, the target language, the inte-
grator the driver program. etc. The file name (without the .kpp) serves as the root name for
the simulation. Here we will refer to this name as ROOT. Since the root name will be incorpo-
rated into Fortran90 module names, it can only contain valid Fortran90 characters, i.e. letters,
numbers, and the underscore.

The sections below outline the steps necessary to build and run a “box-model” simulation with
an example mechanism.

16

3.1 1. Create a directory for the example

Create a directory in which to build and run the example mechanism:

$ cd $HOME
$ mkdir small_strato_example
$ cd small_strato_example

In the following sections we will refer to $HOME/small_strato_example as “the example
directory”.

3.2 2. Create a KPP Definition File

Create a KPP definition file in the example directory. The name of this file will always be
ROOT.kpp, where ROOT is the name of the chemical mechanism.

For this example, write the following lines into a file named small_strato.kpp in the example
directory:

#MODEL small_strato
#LANGUAGE Fortran90
#INTEGRATOR rosenbrock
#DRIVER general

Important: KPP will look for the relevant files (e.g. mechanism definition, driver, etc.) in
the proper subdirectories of KPP_HOME. Therefore you won’t need to copy these manually to the
example directory.

We will now look at the KPP commands in small_strato.kpp.

#MODEL small_strato

The #MODEL command selects a specific kinetic mechanism (in this example,
small_strato). KPP will look in the path $KPP_HOME/models/ for the model defini-
tion file small_strato.def which contains the following code in the KPP language:

#include small_strato.spc { Includes file w/ species definitons ␣
→˓ }
#include small_strato.eqn { Includes file w/ chemical equations ␣
→˓ }

#LOOKATALL { Output all species to small_strato.
→˓dat}
#MONITOR O3;N;O2;O;NO;O1D;NO2; { Print selected species to screen ␣
→˓ }

(continues on next page)

17

(continued from previous page)

#CHECK O; N; { Check Mass Balance of oxygen &␣
→˓nitrogen }

#INITVALUES { Set initial values of species ␣
→˓ }
CFACTOR = 1. ; { and set units conversion factor to 1␣

→˓ }
O1D = 9.906E+01 ;
O = 6.624E+08 ;
O3 = 5.326E+11 ;
O2 = 1.697E+16 ;
NO = 8.725E+08 ;
NO2 = 2.240E+08 ;
M = 8.120E+16 ;

{ Fortran code to be inlined into ROOT_Global }
#INLINE F90_INIT

TSTART = (12*3600)
TEND = TSTART + (3*24*3600)
DT = 0.25*3600
TEMP = 270

#ENDINLINE

{ Matlab code to be inlined into ROOT_Global }
#INLINE MATLAB_INIT

global TSTART TEND DT TEMP
TSTART = (12*3600);
TEND = TSTART + (3*24*3600);
DT = 0.25*3600;
TEMP = 270;

#ENDINLINE

{ C code to be inlined into ROOT_GLOBAL }
#INLINE C_INIT

TSTART = (12*3600);
TEND = TSTART + (3*24*3600);
DT = 0.25*3600;
TEMP = 270;

#ENDINLINE

The definition file small_strato.def uses the #INCLUDE command to include the species
file and the equation file. It also specifies parameters for running a “box-model” simulation,
such as species initial values, start time, stop, time, and timestep (cf. Inlined Code).

The species file small_strato.spc lists all the species in the model. Some of them are vari-
able, meaning that their concentrations change according to the law of mass action kinetics.

18

Others are fixed, with the concentrations determined by physical and not chemical factors (cf.
#DEFVAR and #DEFFIX). For each species its atomic composition is given (unless the user
chooses to ignore it).

#INCLUDE atoms.kpp
#DEFVAR

O = O;
O1D = O;
O3 = O + O + O;
NO = N + O;
NO2 = N + O + O;

#DEFFIX
M = IGNORE;
O2 = O + O;

The species file also includes the atoms file (atoms.kpp), which defines the chemical elements
in the #ATOMS section.

The equation file small_strato.eqn contains the description of the equations in an #EQUA-
TIONS section. The chemical kinetic mechanism is specified in the KPP language. Each re-
action is described as “the sum of reactants equals the sum of products” and, after a colon, is
followed by its rate coefficient. SUN is the normalized sunlight intensity, equal to one at noon
and zero at night. Equation tags, e.g. <R1>, are optional.

#EQUATIONS { Small Stratospheric Mechanism }

<R1> O2 + hv = 2O : (2.643E-10) * SUN*SUN*SUN;
<R2> O + O2 = O3 : (8.018E-17);
<R3> O3 + hv = O + O2 : (6.120E-04) * SUN;
<R4> O + O3 = 2O2 : (1.576E-15);
<R5> O3 + hv = O1D + O2 : (1.070E-03) * SUN*SUN;
<R6> O1D + M = O + M : (7.110E-11);
<R7> O1D + O3 = 2O2 : (1.200E-10);
<R8> NO + O3 = NO2 + O2 : (6.062E-15);
<R9> NO2 + O = NO + O2 : (1.069E-11);
<R10> NO2 + hv = NO + O : (1.289E-02) * SUN;

19

#LANGUAGE Fortran90

The #LANGUAGE command selects the language for the KPP-generated solver code. In this
example we are using Fortran90.

#INTEGRATOR rosenbrock

The #INTEGRATOR command selects a numerical integration routine from the templates pro-
vided in the $KPP_HOME/int directory, or implemented by the user.

In this example, the Rosenbrock integrator and the Fortran90 language have been been specified.
Therefore, the file $KPP_HOME/int/rosenbrock.f90 will be used.

#DRIVER general

The #DRIVER command selects a specific main program (located in the $KPP_HOME/drv di-
rectory):

1. general_adj.f90 : Used with integrators that use the discrete adjoint method

2. general_tlm.f90 : Used with integrators that use the tangent-linear method

3. general.f90 : Used with all other integrators.

In this example, the rosenbrock.f90 integrator does not use either adjoint or tangent-linear
methods, so the $KPP_HOME/drv/general.f90 will be used.

3.3 3. Build the mechanism with KPP

Now that all the necessary files have been copied to the example directory, the small_strato
mechanism can be built. Type:

$ kpp small_strato.kpp

You should see output similar to:

This is KPP-3.0.0.

KPP is parsing the equation file.
KPP is computing Jacobian sparsity structure.
KPP is starting the code generation.
KPP is initializing the code generation.
KPP is generating the monitor data:

- small_strato_Monitor
KPP is generating the utility data:

- small_strato_Util
KPP is generating the global declarations:

- small_strato_Main
(continues on next page)

20

(continued from previous page)
KPP is generating the ODE function:

- small_strato_Function
KPP is generating the ODE Jacobian:

- small_strato_Jacobian
- small_strato_JacobianSP

KPP is generating the linear algebra routines:
- small_strato_LinearAlgebra

KPP is generating the Hessian:
- small_strato_Hessian
- small_strato_HessianSP

KPP is generating the utility functions:
- small_strato_Util

KPP is generating the rate laws:
- small_strato_Rates

KPP is generating the parameters:
- small_strato_Parameters

KPP is generating the global data:
- small_strato_Global

KPP is generating the stoichiometric description files:
- small_strato_Stoichiom
- small_strato_StoichiomSP

KPP is generating the driver from general.f90:
- small_strato_Main

KPP is starting the code post-processing.

KPP has succesfully created the model "small_strato".

This will generate the Fortran90 code needed to solve the small_strato mechanism. The file
listing should be similar to:

atoms.kpp small_strato.kpp
general.f90 small_strato_LinearAlgebra.f90
Makefile_small_strato small_strato_Main.f90
rosenbrock.def small_strato_mex_Fun.f90
rosenbrock.f90 small_strato_mex_Hessian.f90
small_strato.def small_strato_mex_Jac_SP.f90
small_strato.eqn small_strato_Model.f90
small_strato_Function.f90 small_strato_Monitor.f90
small_strato_Global.f90 small_strato_Parameters.f90
small_strato_Hessian.f90 small_strato_Precision.f90
small_strato_HessianSP.f90 small_strato_Rates.f90
small_strato_Initialize.f90 small_strato.spc@
small_strato_Integrator.f90 small_strato_Stoichiom.f90
small_strato_Jacobian.f90 small_strato_StoichiomSP.f90
small_strato_JacobianSP.f90 small_strato_Util.f90

KPP creates Fortran90 beginning with the mechanism name (which is ROOT_ = small_strato_

21

in this example). KPP also generates a human-readable summary of the mechanism
(small_strato.log) as well as the Makefile Makefile_small_strato that can be used to
build the executable.

3.4 4. Build and run the small_strato example

To compile the Fortran90 code generated by KPP into an executable, type:

$ make -f Makefile_small_strato

You will see output similar to this:

gfortran -cpp -O -g -c small_strato_Precision
gfortran -cpp -O -g -c small_strato_Precision.f90
gfortran -cpp -O -g -c small_strato_Parameters.f90
gfortran -cpp -O -g -c small_strato_Global.f90
gfortran -cpp -O -g -c small_strato_Function.f90
gfortran -cpp -O -g -c small_strato_JacobianSP.f90
gfortran -cpp -O -g -c small_strato_Jacobian.f90
gfortran -cpp -O -g -c small_strato_HessianSP.f90
gfortran -cpp -O -g -c small_strato_Hessian.f90
gfortran -cpp -O -g -c small_strato_StoichiomSP.f90
gfortran -cpp -O -g -c small_strato_Stoichiom.f90
gfortran -cpp -O -g -c small_strato_Rates.f90
gfortran -cpp -O -g -c small_strato_Monitor.f90
gfortran -cpp -O -g -c small_strato_Util.f90
gfortran -cpp -O -g -c small_strato_LinearAlgebra.f90
gfortran -cpp -O -g -c small_strato_Initialize.f90
gfortran -cpp -O -g -c small_strato_Integrator.f90
gfortran -cpp -O -g -c small_strato_Model.f90
gfortran -cpp -O -g -c small_strato_Main.f90
gfortran -cpp -O -g small_strato_Precision.o small_strato_
→˓Parameters.o small_strato_Global.o small_strato_Function.o small_
→˓strato_JacobianSP.o small_strato_Jacobian.o small_strato_HessianSP.o␣
→˓small_strato_Hessian.o small_strato_Stoichiom.o small_strato_
→˓StoichiomSP.o small_strato_Rates.o small_strato_Util.o small_
→˓strato_Monitor.o small_strato_LinearAlgebra.o small_strato_Main.o ␣
→˓ small_strato_Initialize.o small_strato_Integrator.o small_
→˓strato_Model.o -o small_strato.exe

Once compilation has finished, you can run the small_strato example by typing:

$./small_strato.exe | tee small_strato.log

This will run a “box-model” simulation forward several steps in time. You will see the con-
centrations of selected species at several timesteps displayed to the screen (aka the Unix stdout
stream) as well as to a log file (small_strato.log).

22

If your simulation results exits abruptly with the Killed error, you probably need to increase
your stack memory limit. On most Linux systems the default stacksize limit is 8 kIb = or 8192
kB. You can max this out with the following commands:

If you are using bash, type:

$ ulimit -s unlimited

If you are using csh, type:

$ limit stacksize unlimited

3.5 5. Cleanup

If you wish to remove the executable (small_strato.exe), as well as the object (*.o) and
module (*.mod) files generated by the Fortran compiler, type:

$ make -f Makefile_small_strato clean

If you also wish to remove all the files that were generated by KPP (i.e. small_strato.log
and small_strato_*.f90), type:

$ make -f Makefile_small_strato distclean

4 Input for KPP

KPP basically handles two types of input files: Kinetic description files and auxiliary files.
Kinetic description files are in KPP syntax and described in the following sections. Auxiliary
files are described in the section entitled Auxiliary files and the substitution preprocessor.

KPP kinetic description files specify the chemical equations, the initial values of each of the
species involved, the integration parameters, and many other options. The KPP preprocessor
parses the kinetic description files and generates several output files. Files that are written in
KPP syntax have one of the suffixes .kpp, .spc, .eqn, or def.

The following general rules define the structure of a kinetic description file:

• A KPP program is composed of KPP sections, KPP commands, and Inlined Code. Their
syntax is presented in BNF description of the KPP language.

• Comments are either enclosed between the curly braces { and }, or written in a line starting
with two slashes //.

• Any name given by the user to denote an atom or a species is restricted to be less than
32 character in length and can only contain letters, numbers, or the underscore character.
The first character cannot be a number. All names are case insensitive.

The kinetic description files contain a detailed specification of the chemical model, information
about the integration method and the desired type of results. KPP accepts only one of these files

23

as input, but using the #INCLUDE command, code from separate files can be combined. The
include files can be nested up to 10 levels. KPP will parse these files as if they were a single
big file. By carefully splitting the chemical description, KPP can be configured for a broad
range of users. In this way the users can have direct access to that part of the model that they
are interested in, and all the other details can be hidden inside several include files. Often, the
atom definitions (atoms.kpp) are included first, then species definitions (*.spc), and finally
the equations of the chemical mechanism (*.eqn).

4.1 KPP sections

A # sign at the beginning of a line followed by a section name starts a new KPP section. Then
a list of items separated by semicolons follows. A section ends when another KPP section or
command occurs, i.e. when another # sign occurs at the beginning of a line. The syntax of an
item definition is different for each particular section.

#ATOMS

The atoms that will be further used to specify the components of a species must be declared in
an #ATOMS section, e.g.:

#ATOMS N; O; Na; Br;

Usually, the names of the atoms are the ones specified in the periodic table of elements. For this
table there is a predefined file containing all definitions that can be used by the command:

#INCLUDE atoms.kpp

This should be the first line in a KPP input file, because it allows to use any atom in the periodic
table of elements throughout the kinetic description file.

#CHECK

KPP is able to do mass balance checks for all equations. Some chemical equations are not
balanced for all atoms, and this might still be correct from a chemical point of view. To accom-
modate for this, KPP can perform mass balance checking only for the list of atoms specified in
the #CHECK section, e.g.:

#CHECK N; C; O;

The balance checking for all atoms can be enabled by using the #CHECKALL command. Without
#CHECK or #CHECKALL, no checking is performed. The IGNORE atom can also be used to control
mass balance checking.

24

#DEFVAR and #DEFFIX

There are two ways to declare new species together with their atom composition: #DEFVAR and
#DEFFIX. These sections define all the species that will be used in the chemical mechanism.
Species can be variable or fixed. The type is implicitly specified by defining the species in the
appropriate sections. A fixed species does not vary through chemical reactions.

For each species the user has to declare the atom composition. This information is used for mass
balance checking. To ignore mass balance checking for a given species, one can declare the
predefined atom IGNORE as being part of the species composition. Examples for these sections
are:

#DEFVAR
NO2 = N + 2O;
CH3OOH = C + 4H + 2O;
HSO4m = IGNORE;
RCHO = IGNORE;

#DEFFIX
CO2 = C + 2O;

#EQUATIONS

The chemical mechanism is specified in the #EQUATIONS section. Each equation is written in
the natural way in which a chemist would write it:

#EQUATIONS

<R1> NO2 + hv = NO + O3P : 6.69e-1*(SUN/60.0);
<R2> O3P + O2 + AIR = O3 : ARR_ac(5.68e-34, -2.80);
<R3> O3P + O3 = 2O2 : ARR_ab(8.00e-12, 2060.0);
<R4> O3P + NO + AIR = NO2 : ARR_ac(1.00e-31, -1.60);
//... etc ...

Note: The above example is taken from the saprc99mechanism (see models/saprc99.eqn),
with some whitespace deleted for clarity. Optional equation tags are specified by text within <
> angle brackets. Functions that compute saprc99 equation rates (e.g. ARR_ac, ARR_ab) are
defined in util/UserRateLaws.f90 and util/UserRateLawsInterfaces.f90.

Only the names of already defined species can be used. The rate coefficient has to be placed at
the end of each equation, separated by a colon. The rate coefficient does not necessarily need
to be a numerical value. Instead, it can be a valid expression (or a call to an inlined rate law
function) in the target language. If there are several #EQUATIONS sections in the input, their
contents will be concatenated.

A minus sign in an equation shows that a species is consumed in a reaction but it does not affect
the reaction rate. For example, the oxidation of methane can be written as:

25

CH4 + OH = CH3OO + H2O - O2 : k_CH4_OH;

However, it should be noted that using negative products may lead to numerical instabilities.

Often, the stoichiometric factors are integers. However, it is also possible to have non-integer
yields, which is very useful to parameterize organic reactions that branch into several side re-
actions:

CH4 + O1D = .75 CH3O2 + .75 OH + .25 HCHO + 0.4 H + .05 H2 : k_CH4_O1D;

KPP provides two pre-defined dummy species: hv and PROD. Using dummy species does not
affect the numerics of the integrators. It only serves to improve the readability of the equations.
For photolysis reactions, hv can be specified as one of the reagents to indicate that light (ℎ𝜈) is
needed for this reaction, e.g.:

NO2 + hv = NO + O : J_NO2;

When the products of a reaction are not known or not important, the dummy species PROD should
be used as a product. This is necessary because the KPP syntax does not allow an empty list of
products. For example, the dry deposition of atmospheric ozone to the surface can be written
as:

O3 = PROD : v_d_O3;

The same equation must not occur twice in the #EQUATIONS section. For example, you may have
both the gas-phase reaction of N2O5 with water in your mechanism and also the heterogeneous
reaction on aerosols:

N2O5 + H2O = 2 HNO3 : k_gas;
N2O5 + H2O = 2 HNO3 : k_aerosol;

These reactions must be merged by adding the rate coefficients:

N2O5 + H2O = 2 HNO3 : k_gas + k_aerosol;

#FAMILIES

Chemical families (for diagnostic purposes) may be specified in the #FAMILIES section as
shown below. Family names beginning with a P denote production, and those beginning with
an L denote loss.

#FAMILIES
POx : O3 + NO2 + 2NO3 + HNO3 + ... etc. add more species as needed ..

→˓.
LOx : O3 + NO2 + 2NO3 + HNO3 + ... etc. add more species as needed ..

→˓.
PCO : CO;
LCO : CO;

(continues on next page)

26

(continued from previous page)
PSO4 : SO4;
LCH4 : CH4;
PH2O2 : H2O2;

KPP will examine the chemical mechanism and create a dummy species for each defined family.
Each dummy species will archive the production and loss for the family. For example, each
molecule of CO that is produced will be added to the PCO dummy species. Likewise, each
molecule of CO that is consumed will be added to the LCO dummy species. This will allow the
PCO and LCO species to be later archived for diagnostic purposes. Dummy species for chemical
families will not be included as active species in the mechanism.

#INITVALUES

The initial concentration values for all species can be defined in the #INITVALUES section, e.g.:

#INITVALUES
CFACTOR = 2.5E19;
NO2 = 1.4E-9;
CO2 = MyCO2Func();
ALL_SPEC = 0.0;

If no value is specified for a particular species, the default value zero is used. One can set the
default values using the generic species names: VAR_SPEC, FIX_SPEC, and ALL_SPEC. In order
to use coherent units for concentration and rate coefficients, it is sometimes necessary to multiply
each value by a constant factor. This factor can be set by using the generic name CFACTOR. Each
of the initial values will be multiplied by this factor before being used. If CFACTOR is omitted,
it defaults to one.

The information gathered in this section is used to generate the Initialize subroutine (cf
ROOT_Initialize). In more complex 3D models, the initial values are usually taken from some
input files or some global data structures. In this case, #INITVALUES may not be needed.

#LOOKAT and #MONITOR

There are two sections in this category: #LOOKAT and #MONITOR.

The section instructs the preprocessor what are the species for which the evolution of the con-
centration, should be saved in a data file. By default, if no #LOOKAT section is present, all the
species are saved. If an atom is specified in the #LOOKAT list then the total mass of the particular
atom is reported. This allows to check how the mass of a specific atom was conserved by the
integration method. The #LOOKATALL command can be used to specify all the species. Output
of #LOOKAT can be directed to the file ROOT.dat using the utility subroutines described in the
section entitled ROOT_Util.

The #MONITOR section defines a different list of species and atoms. This list is used by the driver
to display the concentration of the elements in the list during the integration. This may give us
a feedback of the evolution in time of the selected species during the integration. The syntax

27

is similar to the #LOOKAT section. With the driver general, output of #MONITOR goes to the
screen (STDOUT). The order of the output is: first variable species, then fixed species, finally
atoms. It is not the order in the MONITOR command.

Examples for these sections are:

#LOOKAT NO2; CO2; O3; N;
#MONITOR O3; N;

#SETVAR and #SETFIX

The commands #SETVAR and #SETFIX change the type of an already defined species. Then,
depending on the integration method, one may or may not use the initial classification, or can
easily move one species from one category to another. The use of the generic species VAR_SPEC,
FIX_SPEC, and ALL_SPEC is also allowed. Examples for these sections are:

#SETVAR ALL_SPEC;
#SETFIX H2O; CO2;

4.2 KPP commands

A KPP command begins on a new line with a # sign, followed by a command name and one or
more parameters. Details about each command are given in the following subsections.

28

Table 1: Default values for KPP commands

KPP command default value
#AUTOREDUCE OFF
#CHECKALL
#DECLARE SYMBOL
#DOUBLE ON
#DRIVER none
#DUMMYINDEX OFF
#EQNTAGS OFF
#FUNCTION AGGREGATE
#HESSIAN ON
#INCLUDE
#INTEGRATOR
#INTFILE
#JACOBIAN SPARSE_LU_ROW
#LANGUAGE
#LOOKATALL
#MEX ON
#MINVERSION
#MODEL
#REORDER ON
#STOCHASTIC OFF
#STOICMAT ON
#UPPERCASEF90 OFF

#AUTOREDUCE

The #AUTOREDUCE ON command can be used with #INTEGRATOR rosenbrock to enable auto-
matic mechanism reduction as described in Lin et al. [2023]. Automatic mechanism reduction
is disabled by default.

#DECLARE

The #DECLARE command determines how constants like dp, NSPEC, NVAR, NFIX, and NREACT
are inserted into the KPP-generated code. #DECLARE SYMBOL (the default) will declare array
variables using parameters from the ROOT_Parameters file. #DECLARE VALUE will replace
each parameter with its value.

For example, the global array variable C is declared in the ROOT_Global file generated by
KPP. In the small_strato example (described in Running KPP with an example stratospheric
mechanism), C has dimension NSPEC=7. Using #DECLARE SYMBOL will generate the following
code in ROOT_Global:

! C - Concentration of all species
REAL(kind=dp), TARGET :: C(NSPEC)

29

Whereas #DECLARE VALUE will generate this code instead:

! C - Concentration of all species
REAL(kind=dp), TARGET :: C(7)

We recommend using #DECLARE SYMBOL, as most modern compilers will automatically replace
each parameter (e.g. NSPEC) with its value (e.g 7). However, if you are using a very old compiler
that is not as sophisticated, #DECLARE VALUE might result in better-optmized code.

#DOUBLE

The #DOUBLE command selects single or double precision arithmetic. ON (the default) means
use double precision, OFFmeans use single precision (see the section entitled ROOT_Precision).

Important: We recommend using double precision whenever possible. Using single precision
may lead to integration non-convergence errors caused by roundoff and/or underflow.

#DRIVER

The #DRIVER command selects the driver, i.e., the file from which the main function is to be
taken. The parameter is a file name, without suffix. The appropriate suffix (.f90, .F90, .c, or
.m) is automatically appended.

Normally, KPP tries to find the selected driver file in the directory $KPP_HOME/drv/. However,
if the supplied file name contains a slash, it is assumed to be absolute. To access a driver in the
current directory, the prefix ./ can be used, e.g.:

#DRIVER ./mydriver

It is possible to choose the empty dummy driver none, if the user wants to include the KPP
generated modules into a larger model (e.g. a general circulation or a chemical transport model)
instead of creating a stand-alone version of the chemical integrator. The driver none is also
selected when the #DRIVER command is missing. If the command occurs twice, the second
replaces the first.

#DUMMYINDEX

It is possible to declare species in the #DEFVAR and #DEFFIX sections that are not used in the
#EQUATIONS section. If your model needs to check at run-time if a certain species is included
in the current mechanism, you can set to #DUMMYINDEX ON. Then, KPP will set the indices to
zero for all species that do not occur in any reaction. With #DUMMYINDEX OFF (the default),
those are undefined variables. For example, if you frequently switch between mechanisms with
and without sulfuric acid, you can use this code:

30

IF (ind_H2SO4=0) THEN
PRINT *, 'no H2SO4 in current mechanism'

ELSE
PRINT *, 'c(H2SO4) =', C(ind_H2SO4)

ENDIF

#EQNTAGS

Each reaction in the #EQUATIONS section may start with an equation tag which is enclosed in
angle brackets, e.g.:

<R1> NO2 + hv = NO + O3P : 6.69e-1*(SUN/60.0);

With #EQNTAGS set to ON, this equation tag can be used to refer to a specific equation (cf.
ROOT_Monitor). The default for #EQNTAGS is OFF.

#FUNCTION

The #FUNCTION command controls which functions are generated to compute the produc-
tion/destruction terms for variable species. AGGREGATE generates one function that computes
the normal derivatives. SPLIT generates two functions for the derivatives in production and
destruction forms.

#HESSIAN

The option ON (the default) of the #HESSIAN command turns the Hessian generation on (see
section ROOT_Hessian and ROOT_HessianSP). With OFF it is switched off.

#INCLUDE

The #INCLUDE command instructs KPP to look for the file specified as a parameter and parse
the content of this file before proceeding to the next line. This allows the atoms definition, the
species definition and the equation definition to be shared between several models. Moreover
this allows for custom configuration of KPP to accommodate various classes of users. Include
files can be either in one of the KPP directories or in the current directory.

31

#INTEGRATOR

The #INTEGRATOR command selects the integrator definition file. The parameter is the file
name of an integrator, without suffix. The effect of

#INTEGRATOR integrator_name

is similar to:

#INCLUDE $KPP_HOME/int/integrator_name.def

The #INTEGRATOR command allows the use of different integration techniques on the same
model. If it occurs twice, the second replaces the first. Normally, KPP tries to find the selected
integrator files in the directory $KPP_HOME/int/. However, if the supplied file name contains
a slash, it is assumed to be absolute. To access an integrator in the current directory, the prefix
./ can be used, e.g.:

#INTEGRATOR ./mydeffile

#INTFILE

Attention: #INTFILE is used internally by KPP but should not be used by the KPP user.
Using #INTEGRATOR alone suffices to specify an integrator.

The integrator definition file selects an integrator file with #INTFILE and also defines some
suitable options for it. The #INTFILE command selects the file that contains the integrator
routine. The parameter of the command is a file name, without suffix. The appropriate suffix
(.f90, .F90, .c, or .m is appended and the result selects the file from which the integrator is
taken. This file will be copied into the code file in the appropriate place.

#JACOBIAN

The #JACOBIAN command controls which functions are generated to compute the Jacobian.
The option OFF inhibits the generation of the Jacobian routine. The option FULL generates the
Jacobian as a square NVAR x NVAR matrix. It should only be used if the integrator needs the
whole Jacobians. The options SPARSE_ROW and SPARSE_LU_ROW (the default) both generate
the Jacobian in sparse (compressed on rows) format. They should be used if the integrator
needs the whole Jacobian, but in a sparse form. The format used is compressed on rows. With
SPARSE_LU_ROW, KPP extends the number of nonzeros to account for the fill-in due to the LU
decomposition.

32

#LANGUAGE

Attention: The Fortran77 language option is deprecated in KPP 2.5.0 and later versions.
All further KPP development will only support Fortran90.

The #LANGUAGE command selects the target language in which the code file is to be generated.
Available options are Fortran90, C, or matlab.

You can select the suffix (.F90 or .f90) to use for Fortran90 source code generated by KPP (cf.
#UPPERCASEF90).

#MEX

Mex is a Matlab extension that allows to call functions written in Fortran and C directly from
within the Matlab environment. KPP generates the mex interface routines for the ODE function,
Jacobian, and Hessian, for the target languages C, Fortran77, and Fortran90. The default is #MEX
ON. With #MEX OFF, no Mex files are generated.

#MINVERSION

You may restrict a chemical mechanism to use a given version of KPP or later. To do this, add

#MINVERSION X.Y.Z

to the definition file.

The version number (X.Y.Z) adheres to the Semantic Versioning style (https://semver.org),
where X is the major version number, Y is the minor version number, and Z is the bugfix (aka
“patch”) version number.

For example, if #MINVERSION 2.4.0 is specified, then KPP will quit with an error message
unless you are using KPP 2.4.0 or later.

#MODEL

The chemical model contains the description of the atoms, species, and chemical equations.
It also contains default initial values for the species and default options including a suitable
integrator for the model. In the simplest case, the main kinetic description file, i.e. the one passed
as parameter to KPP, can contain just a single line selecting the model. KPP tries to find a file
with the name of the model and the suffix .def in the $KPP_HOME/models subdirectory. This
file is then parsed. The content of the model definition file is written in the KPP language. The
model definition file points to a species file and an equation file. The species file includes further
the atom definition file. All default values regarding the model are automatically selected. For
convenience, the best integrator and driver for the given model are also automatically selected.

The #MODEL command is optional, and intended for using a predefined model. Users who supply
their own reaction mechanism do not need it.

33

https://semver.org

#REORDER

Reordering of the species is performed in order to minimize the fill-in during the LU factor-
ization, and therefore preserve the sparsity structure and increase efficiency. The reordering is
done using a diagonal Markowitz algorithm. The details are explained in Sandu et al. [1996].
The default is ON. OFF means that KPP does not reorder the species. The order of the variables
is the order in which the species are declared in the #DEFVAR section.

#STOCHASTIC

The option ON of the #STOCHASTIC command turns on the generation of code for stochastic
kinetic simulations (see the section entitled ROOT_Stochastic. The default option is OFF.

#STOICMAT

Unless the #STOICMAT command is set to OFF, KPP generates code for the stoichiometric matrix,
the vector of reactant products in each reaction, and the partial derivative of the time derivative
function with respect to rate coefficients (cf. ROOT_Stoichiom and ROOT_StoichiomSP).

#CHECKALL, #LOOKATALL

The shorthand commands #CHECKALL and #LOOKATALL apply #CHECK and #LOOKAT, respec-
tively, to all species in the mechanism.

#UPPERCASEF90

If you have selected #LANGUAGE Fortran90 option, KPP will generate source code ending in
.f90 by default. Setting #UPPERCASEF90 ON will tell KPP to generate Fortran90 code ending
in .F90 instead.

4.3 Inlined Code

In order to offer maximum flexibility, KPP allows the user to include pieces of code in the kinetic
description file. Inlined code begins on a new line with #INLINE and the inline_type. Next, one
or more lines of code follow, written in the target language (Fortran90, C, or Matlab) as specified
by the inline_type. The inlined code ends with #ENDINLINE. The code is inserted into the KPP
output at a position which is also determined by inline_type as shown in KPP inlined types. If
two inline commands with the same inline type are declared, then the contents of the second is
appended to the first one.

34

List of inlined types

In this manual, we show the inline types for Fortran90. The inline types for the other languages
are produced by replacing F90 by C, or matlab, respectively.

Table 2: KPP inlined types

Inline_type File Placement Usage
F90_DATA ROOT_Monitor specification sec-

tion
(obsolete)

F90_GLOBALROOT_Global specification sec-
tion

global variables

F90_INIT ROOT_Initializesubroutine integration parameters
F90_RATES ROOT_Rates executable sec-

tion
rate law functions

F90_RCONST ROOT_Rates subroutine statements and definitions of rate coef-
ficients

F90_UTIL ROOT_Util executable sec-
tion

utility functions

F90_DATA

This inline type was introduced in a previous version of KPP to initialize variables. It is now
obsolete but kept for compatibility. For Fortran90, F90_GLOBAL should be used instead.

F90_GLOBAL

This inline type can be used to declare global variables, e.g. for a special rate coefficient:

#INLINE F90_GLOBAL
REAL(dp) :: k_DMS_OH

#ENDINLINE

Inlining code can be useful to introduce additional state variables (such as temperature, humid-
ity, etc.) for use by KPP routines, such as for calculating rate coefficients.

If a large number of state variables needs to be held in inline code, or require intermediate
computation that may be repeated for many rate coefficients, a derived type object should be
used for efficiency, e.g.:

#INLINE F90_GLOBAL
TYPE, PUBLIC :: ObjGlobal_t
! ... add variable fields to this type ...

END TYPE ObjGlobal_t
TYPE(ObjGlobal_t), TARGET, PUBLIC :: ObjGlobal

#ENDINLINE

35

This global variable ObjGlobal can then be used globally in KPP.

Another way to avoid cluttering up the KPP input file is to #include a header file with global
variables:

#INLINE F90_GLOBAL
! Inline common variables into KPP_ROOT_Global.f90
#include "commonIncludeVars.f90"
#ENDINLINE

In future versions of KPP, the global state will be reorganized into derived type objects as well.

F90_INIT

This inline type can be used to define initial values before the start of the integration, e.g.:

#INLINE F90_INIT
TSTART = (12.*3600.)
TEND = TSTART + (3.*24.*3600.)
DT = 0.25*3600.
TEMP = 270.

#ENDINLINE

F90_RATES

This inline type can be used to add new subroutines to calculate rate coefficients, e.g.:

#INLINE F90_RATES
REAL FUNCTION k_SIV_H2O2(k_298,tdep,cHp,temp)
! special rate function for S(IV) + H2O2
REAL, INTENT(IN) :: k_298, tdep, cHp, temp
k_SIV_H2O2 = k_298 &

* EXP(tdep*(1./temp-3.3540E-3)) &
* cHp / (cHp+0.1)

END FUNCTION k_SIV_H2O2
#ENDINLINE

F90_RCONST

This inline type can be used to define time-dependent values of rate coefficients. You may inline
USE statements that reference modules where rate coefficients are computed, e.g.:

#INLINE F90_RCONST
USE MyRateFunctionModule

#ENDINLINE

or define variables directly, e.g.:

36

#INLINE F90_RCONST
k_DMS_OH = 1.E-9*EXP(5820./temp)*C(ind_O2)/ &

(1.E30+5.*EXP(6280./temp)*C(ind_O2))
#ENDINLINE

Note that the USE statements must precede any variable definitions.

The inlined code will be placed directly into the subroutines UPDATE_RCONST and
UPDATE_PHOTO in the ROOT_Rates file.

F90_UTIL

This inline type can be used to define utility subroutines.

4.4 Auxiliary files and the substitution preprocessor

The auxiliary files in the $KPP_HOME/util subdirectory are templates for integrators, drivers,
and utilities. They are inserted into the KPP output after being run through the substitution
preprocessor. This preprocessor replaces several placeholder symbols in the template files with
their particular values in the model at hand. Usually, only KPP_ROOT and KPP_REAL are needed
because the other values can also be obtained via the variables listed in KPP inlined types.

KPP_REAL is replaced by the appropriate single or double precision declaration type. Depending
on the target language KPP will select the correct declaration type. For example if one needs to
declare an array BIG of size 1000, a declaration like the following must be used:

KPP_REAL :: BIG(1000)

When used with the command #DOUBLE ON, the above line will be automatically translated into:

REAL(kind=dp) :: BIG(1000)

and when used with the command #DOUBLE OFF, the same line will become:

REAL(kind=sp) :: BIG(1000)

in the resulting Fortran90 output file.

KPP_ROOT is replaced by the root file name of the main kinetic description file. In our example
where we are processing small_strato.kpp, a line in an auxiliary Fortran90 file like

USE KPP_ROOT_Monitor

will be translated into

USE small_strato_Monitor

in the generated Fortran90 output file.

37

List of auxiliary files for Fortran90

Table 3: Auxiliary files for Fortran90

File Contents
dFun_dRcoeff.f90 Derivatives with respect to reaction

rates.
dJac_dRcoeff.f90 Derivatives with respect to reaction

rates.
Makefile_f90 and Makefile_upper_F90 Makefiles to build Fortran-90 code.
Mex_Fun.f90 Mex files.
Mex_Jac_SP.f90 Mex files.
Mex_Hessian.f90 Mex files.
sutil.f90 Sparse utility functions.
tag2num.f90 Function related to equation tags.
UpdateSun.f90 Function related to solar zenith an-

gle.
UserRateLaws.f90 and
UserRateLawsInterfaces.f90

User-defined rate-law functions.

util.f90 Input/output utilities.

List of symbols replaced by the substitution preprocessor

Table 4: Symbols and their replacements

Symbol Replacement Example
KPP_ROOT The ROOT name small_strato
KPP_REAL The real data type REAL(kind=dp)
KPP_NSPEC Number of species 7
KPP_NVAR Number of variable species 5
KPP_NFIX Number of fixed species 2
KPP_NREACT Number of chemical reactions 10
KPP_NONZERO Number of Jacobian nonzero elements 18
KPP_LU_NONZERO Number of Jacobian nonzero elements,

with LU fill-in
19

KPP_LU_NHESS Number of Hessian nonzero elements 10
KPP_FUN_OR_FUN_SPLITName of the function to be called FUN(Y,FIX,

RCONST,Ydot)

38

4.5 Controlling the Integrator with ICNTRL and RCNTRL

In order to offer more control over the integrator, KPP provides the arrays ICNTRL (integer)
and RCNTRL (real). Each of them is an array of 20 elements that allow the fine-tuning of the
integrator. All integrators (except for tau_leap and gillespie) use ICNTRL and RCNTRL.
Details can be found in the comment lines of the individual integrator files in $KPP_HOME/
int/.

ICNTRL

Table 5: Summary of ICNTRL usage in the f90 integrators.
Here, Y = used, and s = solver-specific usage.

ICNTRL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
beuler Y Y Y Y Y Y
dvode Y
exponential
feuler Y Y Y
gillespie
lsode Y Y s Y
radau5 Y Y Y Y Y Y
rosen-
brock_adj

Y Y Y Y s s s Y

rosenbrock Y Y Y Y Y Y
rosen-
brock_tlm

Y Y Y Y s Y

rosen-
brock_autoreduce

Y Y Y Y s s s Y Y

runge_kutta_adj Y Y Y Y s s s s s Y Y
runge_kutta Y Y Y Y Y s Y Y
runge_kutta_tlm Y Y Y Y s s s Y s Y
sdirk4 Y Y Y
sdirk_adj Y Y Y Y Y s s Y
sdirk Y Y Y Y Y Y
sdirk_tlm Y Y Y Y Y s s s Y
seulex Y Y Y s s s s s Y
tau_leap

ICNTRL(1)

= 1: 𝐹 = 𝐹 (𝑦), i.e. independent of t (autonomous)

= 0: 𝐹 = 𝐹 (𝑡, 𝑦), i.e. depends on t (non-autonomous)

ICNTRL(2)

The absolute (ATOL) and relative (RTOL) tolerances can be expressed by either a scalar or
individually for each species in a vector:

= 0 : NVAR -dimensional vector

39

= 1 : scalar

ICNTRL(3)

Selection of a specific method.

ICNTRL(4)

Maximum number of integration steps.

ICNTRL(5)

Maximum number of Newton iterations.

ICNTRL(6)

Starting values of Newton iterations (only avaialble for some of the integrators).

= 0 : Interpolated

= 1 : Zero

ICNTRL(11)

Gustafsson step size controller

ICNTRL(12)

(Solver-specific for rosenbrock_autoreduce) Controls whether auto-reduction of the
mechanism is performed. If set to = 0, then the integrator behaves the same as
rosenbrock.

ICNTRL(13)

(Solver-specific for rosenbrock_autoreduce) Controls whether in auto-reduction
species production and loss rates are scanned throughout the internal time steps of the
integrator for repartitioning.

ICNTRL(14)

(Solver-specific for rosenbrock_autoreduce) If set to > 0, then the threshold is cal-
culated based on the max of production and loss rate of the species ID specified in
ICNTRL(14) multiplied by RCNTRL(14).

ICNTRL(15)

This determines which Update_* subroutines are called within the integrator.

= -1 : Do not call any Update_* subroutines

= 0 : Use the integrator-specific default values

> 1 : A number between 1 and 7, derived by adding up bits with values 4, 2, and 1. The
first digit (4) activates Update_SUN. The second digit (2) activates Update_PHOTO. The
third digit (1) activates Update_RCONST. |

For example ICNTRL(15)=6) (4+2) will activate the calls to Update_SUN and
Update_PHOTO, but not to Update_RCONST.

ICNTRL(16)

Treatment of negative concentrations:

= 0 : Leave negative values unchanged

40

= 1 : Set negative values to zero

= 2 : Print warning and continue

= 3 : Print error message and stop

ICNTRL(17)

Verbosity:

= 0 : Only return error number

= 1 : Verbose error output

ICNTRL(18) ... ICNTRL(20)

currently not used

41

RCNTRL

Table 6: Summary of RCNTRL usage in the f90 integrators.
Here, Y = used, and s = solver-specific usage.

RC-
N-
TRL

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

beuler Y Y Y Y Y Y Y Y Y Y Y
dvode
expo-
nen-
tial
feuler
gille-
spie
lsode Y Y Y
radau5 Y Y Y Y Y Y Y Y Y
rosen-
brock_adj

Y Y Y Y Y Y Y

rosen-
brock

Y Y Y Y Y Y Y

rosen-
brock_tlm

Y Y Y Y Y Y Y

rosen-
brock_autoreduce

Y Y Y Y Y Y Y s s

runge_kutta_adjY Y Y Y Y Y Y Y Y Y Y
runge_kuttaY Y Y Y Y Y Y Y Y Y Y
runge_kutta_tlmY Y Y Y Y Y Y Y Y Y Y
sdirk4 Y Y Y Y Y Y Y Y Y Y Y
sdirk_adjY Y Y Y Y Y Y Y Y Y Y
sdirk Y Y Y Y Y Y Y Y Y Y Y
sdirk_tlmY Y Y Y Y Y Y Y Y Y Y
seulex Y Y Y Y Y Y Y Y s s s s s s s s s s
tau_leap

RCNTRL(1)

Hmin, the lower bound of the integration step size. It is not recommended to change the
default value of zero.

RCNTRL(2)

Hmax, the upper bound of the integration step size.

RCNTRL(3)

Hstart, the starting value of the integration step size.

RCNTRL(4)

FacMin, lower bound on step decrease factor.

42

RCNTRL(5)

FacMax, upper bound on step increase factor.

RCNTRL(6)

FacRej, step decrease factor after multiple rejections.

RCNTRL(7)

FacSafe, the factor by which the new step is slightly smaller than the predicted value.

RCNTRL(8)

ThetaMin. If the Newton convergence rate is smaller than ThetaMin, the Jacobian is not
recomputed.

RCNTRL(9)

NewtonTol, the stopping criterion for Newton’s method.

RCNTRL(10)

Qmin

RCNTRL(11)

Qmax. If Qmin < Hnew/Hold < Qmax, then the step size is kept constant and the LU
factorization is reused.

RCNTRL(12)

(Solver-specific for rosenbrock_autoreduce) Used to specify the threshold for auto-
reduction partitioning, if ICNTRL(12) = 1, and ICNTRL(14) = 0. Will be ignored if
ICNTRL(14) > 0.

RCNTRL(14)

(Solver-specific for rosenbrock_autoreduce) Used to specify the multiplier for
threshold for auto-reduction partitioning, if ICNTRL(12) = 1, and ICNTRL(14) >
0, RCNTRL(14) is multiplied against max of production and loss rates of species
ICNTRL(14) to produce the partitioning threshold, ignoring RCNTRL(12).

RCNTRL(10) ... RCNTRL(19)

(Solver-specific for seulex)

RCNTRL(20)

currently not used

5 Output from KPP

This chapter describes the source code files that are generated by KPP.

43

5.1 The Fortran90 code

The code generated by KPP is organized in a set of separate files. Each has a complete descrip-
tion of how it was generated at the begining of the file. The files associated with root are named
with a corresponding prefix ROOT_ A short description of each file is contained in the following
sections.

Fig. 1: Figure 1: Interdependencies of the KPP-generated files. Each arrow starts at the module
that exports a variable or subroutine and points to the module that imports it via the Fortran90
USE instruction. The prefix ROOT_ has been omitted from module names for better readability.
Dotted boxes show optional files that are only produced under certain circumstances.

All subroutines and functions, global parameters, variables, and sparsity data structures are
encapsulated in modules. There is exactly one module in each file, and the name of the module
is identical to the file name but without the suffix .f90 or .F90. Figure 1 (above) shows how
these modules are related to each other. The generated code is consistent with the Fortran90
standard. It may, however, exceed the official maximum number of 39 continuation lines.

Tip: The default Fortran90 file suffix is .f90. To have KPP generate Fortran90 code ending
in .F90 instead, add the command #UPPERCASEF90 ON to the KPP definition file.

44

ROOT_Main

ROOT_Main.f90 (or .F90) root is the main Fortran90 program. It contains the driver after
modifications by the substitution preprocessor. The name of the file is computed by KPP by
appending the suffix to the root name.

Using #DRIVER none will skip generating this file.

ROOT_Model

The file ROOT_Model.f90 (or .F90) unifies all model definitions in a single module. This
simplifies inclusion into external Fortran programs.

ROOT_Initialize

The file ROOT_Initialize.f90 (or .F9O) contains the subroutine Initialize, which defines
initial values of the chemical species. The driver calls the subroutine once before the time
integration loop starts.

ROOT_Integrator

The file ROOT_Integrator.f90 (or .F90) contains the subroutine Integrate, which is called
every time step during the integration. The integrator that was chosen with the #INTEGRATOR
command is also included in this file. In case of an unsuccessful integration, the module root
provides a short error message in the public variable IERR_NAME.

ROOT_Monitor

The file ROOT_Monitor.f90 (.F90) contains arrays with information about the chemical mech-
anism. The names of all species are included in SPC_NAMES and the names of all equations are
included in EQN_NAMES.

It was shown (cf. #EQNTAGS) that each reaction in the section may start with an equation tag
which is enclosed in angle brackets, e.g.:

<R1> NO2 + hv = NO + O3P : 6.69e-1*(SUN/60.0e0);

If the equation tags are switched on, KPP also generates the PARAMETER array EQN_TAGS. In
combination with EQN_NAMES and the function tag2num that converts the equation tag to the
KPP-internal tag number, this can be used to describe a reaction:

PRINT*, ’Reaction 1 is:’, EQN_NAMES(tag2num(’R1’))

45

ROOT_Precision

Fortran90 code uses parameterized real types. ROOT_Precision.f90 (or .F90) contains the
following real kind definitions:

! KPP_SP - Single precision kind
INTEGER, PARAMETER :: &
SP = SELECTED_REAL_KIND(6,30)

! KPP_DP - Double precision kind
INTEGER, PARAMETER :: &

DP = SELECTED_REAL_KIND(12,300)

Depending on the choice of the #DOUBLE command, the real variables are of type double
(REAL(kind=dp)) or single precision (REAL(kind=sp)). Changing the parameters of the
SELECTED_REAL_KIND function in this module will cause a change in the working precision
for the whole model.

ROOT_Rates

The code to update the rate constants is in ROOT_Rates.f90 (or .F90). The user defined rate
law functions (cf. Fortran90 subrotutines in ROOT_Rates) are also placed here.

Table 7: Fortran90 subrotutines in ROOT_Rates

Function Description
Update_PHOTO Update photolysis rate coefficients
Update_RCONST Update all rate coefficients
Update_SUN Update sun intensity

ROOT_Parameters

Global parameters are defined and initialized in ROOT_Parameters.f90 (or .F90):

46

Table 8: Parameters Declared in ROOT_Parameters

Parameter Represents Example
NSPEC No. chemical species (NVAR + NFIX) 7
NVAR No. variable species 5
NFIX No. fixed species 2
NREACT No. reactions 10
NONZERO No. nonzero entries Jacobian 18
LU_NONZERO As above, after LU factorization 19
NHESS Length, sparse Hessian 10
NJVRP Length, sparse Jacobian JVRP 13
NSTOICM Length, stoichiometric matrix 22
ind_spc Index of species spc in C
indf_spc Index of fixed species spc in FIX

Example values listed in the 3rd column are taken from the small_strato mechanism (cf.
Running KPP with an example stratospheric mechanism).

KPP orders the variable species such that the sparsity pattern of the Jacobian is maintained after
an LU decomposition. For our example there are five variable species (NVAR = 5) ordered as

ind_O1D=1, ind_O=2, ind_O3=3, ind_NO=4, ind_NO2=5

and two fixed species (NFIX = 2)

ind_M = 6, ind_O2 = 7.

KPP defines a complete set of simulation parameters, including the numbers of variable and
fixed species, the number of chemical reactions, the number of nonzero entries in the sparse
Jacobian and in the sparse Hessian, etc.

ROOT_Global

Several global variables are declared in ROOT_Global.f90 (or .F90):

47

Table 9: Global Variables Declared in ROOT_Global

Global variable Represents
C(NSPEC) Concentrations, all species
VAR(:) Concentrations, variable species (pointer)
FIX(:) Concentrations, fixed species (pointer)
RCONST(NREACT) Rate coefficient values
TIME Current integration time
SUN Sun intensity between 0 and 1
TEMP Temperature
TSTART, TEND Simulation start/end time
DT Simulation time step
ATOL(NSPEC) Absolute tolerances
RTOL(NSPEC) Relative tolerances
STEPMIN Lower bound for time step
STEPMAX Upper bound for time step
CFACTOR Conversion factor

Both variable and fixed species are stored in the one-dimensional array C. The first part (indices
from 1 to NVAR) contains the variable species, and the second part (indices from to NVAR+1 to
NSPEC) the fixed species. The total number of species is the sum of the NVAR and NFIX. The
parts can also be accessed separately through pointer variables VAR and FIX, which point to the
proper elements in C.

VAR(1:NVAR) => C(1:NVAR)
FIX(1:NFIX) => C(NVAR+1:NSPEC)

Important: In previous versions of KPP, Fortran90 code was generated with VAR and FIX
being linked to the C array with an EQUIVALENCE statement. This construction, however, is
not thread-safe, and it prevents KPP-generated Fortran90 code from being used within parallel
environments (e.g. such as an OpenMP5 parallel loop).

We have modified KPP 2.5.0 and later versions to make KPP-generated Fortran90 code thread-
safe. VAR and FIX are now POINTER variables that point to the proper slices of the C array. They
are also nullified when no longer needed. VAR and FIX are now also kept internal to the various
integrator files located in the $KPP_HOME/int directory.

5 https://openmp.org

48

https://openmp.org

ROOT_Function

The chemical ODE system for our small_strato example (described in Running KPP with
an example stratospheric mechanism) is:

𝑑[𝑂(1𝐷)]

𝑑𝑡
= 𝑘5 [𝑂3]− 𝑘6 [𝑂(1𝐷)] [𝑀]− 𝑘7 [𝑂(1𝐷)] [𝑂3]

𝑑[𝑂]

𝑑𝑡
= 2 𝑘1 [𝑂2]− 𝑘2 [𝑂] [𝑂2] + 𝑘3 [𝑂3]

−𝑘4 [𝑂] [𝑂3] + 𝑘6 [𝑂(1𝐷)] [𝑀]

−𝑘9 [𝑂] [𝑁𝑂2] + 𝑘10 [𝑁𝑂2]

𝑑[𝑂3]

𝑑𝑡
= 𝑘2 [𝑂] [𝑂2]− 𝑘3 [𝑂3]− 𝑘4 [𝑂] [𝑂3]− 𝑘5 [𝑂3]

−𝑘7 [𝑂(1𝐷)] [𝑂3]− 𝑘8 [𝑂3] [𝑁𝑂]

𝑑[𝑁𝑂]

𝑑𝑡
= −𝑘8 [𝑂3] [𝑁𝑂] + 𝑘9 [𝑂] [𝑁𝑂2] + 𝑘10 [𝑁𝑂2]

𝑑[𝑁𝑂2]

𝑑𝑡
= 𝑘8 [𝑂3] [𝑁𝑂]− 𝑘9 [𝑂] [𝑁𝑂2]− 𝑘10 [𝑁𝑂2]

where square brackets denote concentrations of the species. The code for the ODE function is in
ROOT_Function.f90 (or .F90) The chemical reaction mechanism represents a set of ordinary
differential equations (ODEs) of dimension . The concentrations of fixed species are parameters
in the derivative function. The subroutine computes first the vector A of reaction rates and then
the vector Vdot of variable species time derivatives. The input arguments V, F, RCT are the
concentrations of variable species, fixed species, and the rate coefficients, respectively. A and
Vdot may be returned to the calling program (for diagnostic purposes) with optional ouptut
argument Aout. Below is the Fortran90 code generated by KPP for the ODE function of our
small_strato example.

SUBROUTINE Fun (V, F, RCT, Vdot, Aout, Vdotout)

! V - Concentrations of variable species (local)
REAL(kind=dp) :: V(NVAR)

! F - Concentrations of fixed species (local)
REAL(kind=dp) :: F(NVAR)

! RCT - Rate constants (local)
REAL(kind=dp) :: RCT(NREACT)

! Vdot - Time derivative of variable species concentrations
REAL(kind=dp) :: Vdot(NVAR)

! Aout - Optional argument to return equation rate constants
REAL(kind=dp), OPTIONAL :: Aout(NREACT)

! Computation of equation rates
A(1) = RCT(1)*F(2)
A(2) = RCT(2)*V(2)*F(2)
A(3) = RCT(3)*V(3)
A(4) = RCT(4)*V(2)*V(3)

(continues on next page)

49

(continued from previous page)
A(5) = RCT(5)*V(3)
A(6) = RCT(6)*V(1)*F(1)
A(7) = RCT(7)*V(1)*V(3)
A(8) = RCT(8)*V(3)*V(4)
A(9) = RCT(9)*V(2)*V(5)
A(10) = RCT(10)*V(5)

!### Use Aout to return equation rates
IF (PRESENT(Aout)) Aout = A

! Aggregate function
Vdot(1) = A(5)-A(6)-A(7)
Vdot(2) = 2*A(1)-A(2)+A(3) &

-A(4)+A(6)-A(9)+A(10)
Vdot(3) = A(2)-A(3)-A(4)-A(5) &

-A(7)-A(8)
Vdot(4) = -A(8)+A(9)+A(10)
Vdot(5) = A(8)-A(9)-A(10)

END SUBROUTINE Fun

ROOT_Jacobian and ROOT_JacobianSP

The Jacobian matrix for our example contains 18 non-zero elements:

J(1, 1) = −𝑘6 [𝑀]− 𝑘7 [𝑂3]

J(1, 3) = 𝑘5 − 𝑘7 [𝑂(1𝐷)]

J(2, 1) = 𝑘6 [𝑀]

J(2, 2) = −𝑘2 [𝑂2]− 𝑘4 [𝑂3]− 𝑘9 [𝑁𝑂2]

J(2, 3) = 𝑘3 − 𝑘4 [𝑂]

J(2, 5) = −𝑘9 [𝑂] + 𝑘10

J(3, 1) = −𝑘7 [𝑂3]

J(3, 2) = 𝑘2 [𝑂2]− 𝑘4 [𝑂3]

J(3, 3) = −𝑘3 − 𝑘4 [𝑂]− 𝑘5 − 𝑘7 [𝑂(1𝐷)]− 𝑘8 [𝑁𝑂]

J(3, 4) = −𝑘8 [𝑂3]

J(4, 2) = 𝑘9 [𝑁𝑂2]

J(4, 3) = −𝑘8 [𝑁𝑂]

J(4, 4) = −𝑘8 [𝑂3]

J(4, 5) = 𝑘9 [𝑂] + 𝑘10

J(5, 2) = −𝑘9 [𝑁𝑂2]

J(5, 3) = 𝑘8 [𝑁𝑂]

J(5, 4) = 𝑘8 [𝑂3]

J(5, 5) = −𝑘9 [𝑂]− 𝑘10

50

It defines how the temporal change of each chemical species depends on all other species.
For example, J(5, 2) shows that 𝑁𝑂2 (species number 5) is affected by 𝑂 (species number
2) via reaction R9. The sparse data structures for the Jacobian are declared and initialized in
ROOT_JacobianSP.f90 (or .F90). The code for the ODE Jacobian and sparse multiplications
is in ROOT_Jacobian.f90 (or .F90).

Tip: Adding either #JACOBIAN SPARSE_ROW or #JACOBIAN SPARSE_LU_ROW to the KPP
definition file will create the file ROOT_JacobianSP.f90 (or .F90).

The Jacobian of the ODE function is automatically constructed by KPP. KPP generates the Jaco-
bian subroutine Jac or JacSP where the latter is generated when the sparse format is required.
Using the variable species V, the fixed species F, and the rate coefficients RCT as input, the sub-
routine calculates the Jacobian JVS. The default data structures for the sparse compressed on
rows Jacobian representation (for the case where the LU fill-in is accounted for) are:

Table 10: Sparse Jacobian Data Structures

Global variable Represents
JVS(LU_NONZERO) Jacobian nonzero elements
LU_IROW(LU_NONZERO) Row indices
LU_ICOL(LU_NONZERO) Column indices
LU_CROW(NVAR+1) Start of rows
LU_DIAG(NVAR+1) Diagonal entries

JVS stores the LU_NONZERO elements of the Jacobian in row order. Each row I starts at position
LU_CROW(I), and LU_CROW(NVAR+1) = LU_NONZERO+1. The location of the I-th diagonal ele-
ment is LU_DIAG(I). The sparse element JVS(K) is the Jacobian entry in row LU_IROW(K) and
column LU_ICOL(K). For the small_strato example KPP generates the following Jacobian
sparse data structure:

LU_ICOL = (/ 1,3,1,2,3,5,1,2,3,4, &
5,2,3,4,5,2,3,4,5 /)

LU_IROW = (/ 1,1,2,2,2,2,3,3,3,3, &
3,4,4,4,4,5,5,5,5 /)

LU_CROW = (/ 1,3,7,12,16,20 /)
LU_DIAG = (/ 1,4,9,14,19,20 /)

This is visualized in Figure 2 below.. The sparsity coordinate vectors are computed by KPP and
initialized statically. These vectors are constant as the sparsity pattern of the Jacobian does not
change during the computation.

Two other KPP-generated routines, Jac_SP_Vec and JacTR_SP_Vec (see Fortran90 subrou-
tines in ROOT_Jacobian) are useful for direct and adjoint sensitivity analysis. They perform
sparse multiplication of JVS (or its transpose for JacTR_SP_Vec) with the user-supplied vector
UV without any indirect addressing.

51

Fig. 2: Figure 2: The sparsity pattern of the Jacobian for the small_strato example. All non-
zero elements are marked with a bullet. Note that even though J(3, 5) is zero, it is also included
here because of the fill-in.

Table 11: Fortran90 subroutines in ROOT_Jacobian

Function Description
Jac_SP ODE Jacobian in sparse format
Jac_SP_Vec Sparse multiplication
JacTR_SP_Vec Sparse multiplication
Jac ODE Jacobian in full format

ROOT_Hessian and ROOT_HessianSP

The sparse data structures for the Hessian are declared and initialized in ROOT_Hessian.f90 (or
.F90). The Hessian function and associated sparse multiplications are in ROOT_HessianSP.
f90 (or .F90).

The Hessian contains the second order derivatives of the time derivative functions. More ex-
actly, the Hessian is a 3-tensor such that

𝐻𝑖,𝑗,𝑘 =
𝜕2(d𝑐/d𝑡)𝑖
𝜕𝑐𝑗 𝜕𝑐𝑘

, 1 ≤ 𝑖, 𝑗, 𝑘 ≤ 𝑁var .

KPP generates the routine Hessian:

52

Table 12: Fortran90 functions in ROOT_Hessian

Function Description
Hessian ODE Hessian in sparse format
Hess_Vec Hessian action on vectors
HessTR_Vec Transposed Hessian action on vectors

Using the variable species V, the fixed species F, and the rate coefficients RCT as input, the
subroutine Hessian calculates the Hessian. The Hessian is a very sparse tensor. The sparsity of
the Hessian for our example is visualized in Figure 3: The Hessian of the small_strato example.

Fig. 3: Figure 3: The Hessian of the small_strato example.

KPP computes the number of nonzero Hessian entries and saves it in the variable NHESS. The
Hessian itself is represented in coordinate sparse format. The real vector HESS holds the values,
and the integer vectors IHESS_I, IHESS_J, and IHESS_K hold the indices of nonzero entries as
illustrated in Sparse Hessian Data.

Table 13: Sparse Hessian Data

Variable Represents
HESS(NHESS) Hessian nonzero elements 𝐻𝑖,𝑗,𝑘

IHESS_I(NHESS) Index 𝑖 of element 𝐻𝑖,𝑗,𝑘

IHESS_J(NHESS) Index 𝑗 of element 𝐻𝑖,𝑗,𝑘

IHESS_J(NHESS) Index 𝑘 of element 𝐻𝑖,𝑗,𝑘

Since the time derivative function is smooth, these Hessian matrices are symmetric,
HESSi,j,k=HESSi,k,j. KPP stores only those entries HESSi,j,k with 𝑗 ≤ 𝑘. The sparsity coor-
dinate vectors IHESS_1, IHESS_J and IHESS_K are computed by KPP and initialized statically.
They are constant as the sparsity pattern of the Hessian does not change during the computation.

The routines Hess_Vec and HessTR_Vec compute the action of the Hessian (or its transpose)
on a pair of user-supplied vectors U1 and U2. Sparse operations are employed to produce the
result vector.

53

ROOT_LinearAlgebra

Sparse linear algebra routines are in the file ROOT_LinearAlgebra.f90 (or .F90). To numeri-
cally solve for the chemical concentrations one must employ an implicit timestepping technique,
as the system is usually stiff. Implicit integrators solve systems of the form

𝑃 𝑥 = (𝐼 − ℎ𝛾𝐽)𝑥 = 𝑏

where the matrix 𝑃 = 𝐼 − ℎ𝛾𝐽 is refered to as the “prediction matrix”. 𝐼 the identity matrix,
ℎ the integration time step, 𝛾 a scalar parameter depending on the method, and 𝐽 the system
Jacobian. The vector 𝑏 is the system right hand side and the solution 𝑥 typically represents an
increment to update the solution.

The chemical Jacobians are typically sparse, i.e. only a relatively small number of entries are
nonzero. The sparsity structure of 𝑃 is given by the sparsity structure of the Jacobian, and is
produced by KPP (with account for the fill-in) as discussed above.

KPP generates the sparse linear algebra subroutine KppDecomp (see Fortran90 functions in
ROOT_LinearAlgebra) which performs an in-place, non-pivoting, sparse LU decomposition of
the prediction matrix 𝑃 . Since the sparsity structure accounts for fill-in, all elements of the full
LU decomposition are actually stored. The output argument IER returns a value that is nonzero
if singularity is detected.

Table 14: Fortran90 functions in ROOT_LinearAlgebra

Function Description
KppDecomp Sparse LU decomposition
KppSolve Sparse back subsitution
KppSolveTR Transposed sparse back substitution

The subroutines KppSolve and KppSolveTr and use the in-place LU factorization 𝑃 as com-
puted by and perform sparse backward and forward substitutions (using 𝑃 or its transpose). The
sparse linear algebra routines KppDecomp and KppSolve are extremely efficient, as shown by
Sandu et al. [1996].

ROOT_Stoichiom and ROOT_StoichiomSP

These files contain contain a description of the chemical mechanism in stoichiometric form. The
file ROOT_Stoichiom.f90 (or .F90) contains the functions for reactant products and its Jaco-
bian, and derivatives with respect to rate coefficients. The declaration and initialization of the
stoichiometric matrix and the associated sparse data structures is done in ROOT_StochiomSP.
f90 (or .F90).

Tip: Adding #STOICMAT ON to the KPP definition file will create the file ROOT_Stoichiom.
f90 (or .F90) Also, if either #JACOBIAN SPARSE ROW or #JACOBIAN SPARSE_LU_ROW are
also added to the KPP definition file, the file ROOT_StoichiomSP.f90 (or .F90) will also be
created.

54

The stoichiometric matrix is constant sparse. For our example the matrix NSTOICM=22 has 22
nonzero entries out of 50 entries. KPP produces the stoichiometric matrix in sparse, column-
compressed format, as shown in Sparse Stoichiometric Matrix. Elements are stored in colum-
nwise order in the one-dimensional vector of values STOICM. Their row and column indices
are stored in ICOL_STOICM and ICOL_STOICM respectively. The vector CCOL_STOICM contains
pointers to the start of each column. For example column j starts in the sparse vector at position
CCOL_STOICM(j) and ends at CCOL_STOICM(j+1)-1. The last value CCOL_STOICM(NVAR) =
NSTOICHM+1 simplifies the handling of sparse data structures.

Table 15: Sparse Stoichiometric Matrix

Variable Represents
STOICM(NSTOICM) Stoichiometric matrix
IROW_STOICM(NSTOICM) Row indices
ICOL_STOICM(NSTOICM) Column indices
CCOL_STOICM(NREACT+1) Start of columns

Table 16: Fortran90 functions in ROOT_Stoichiom

Variable Represents
dFun_dRcoeff Derivatives of Fun w/r/t rate coefficients
dJac_dRcoeff Derivatives of Jac w/r/t rate coefficients
ReactantProd Reactant products
JacReactantProd Jacobian of reactant products

The subroutine ReactantProd (see Fortran90 functions in ROOT_Stoichiom) computes the
reactant products ARP for each reaction, and the subroutine JacReactantProd computes the
Jacobian of reactant products vector, i.e.:

JVRP = 𝜕ARP/𝜕V

The matrix JVRP is sparse and is computed and stored in row compressed sparse format, as
shown in Fortran90 functions in ROOT_Hessian. The parameter NJVRP holds the number of
nonzero elements. For our small_strato example:

NJVRP = 13
CROW_JVRP = (/ 1,1,2,3,5,6,7,9,11,13,14 /)
ICOL_JVRP = (/ 2,3,2,3,3,1,1,3,3,4,2,5,4 /)

Table 17: Sparse Data for Jacobian of Reactant Products

Variable Represents
JVRP(NJVRP) Nonzero elements of JVRP
ICOL_JVRP(NJVRP) Column indices of JVRP
IROW_JVRP(NJVRP) Row indices of JVRP
CROW_JVRP(NREACT+1) Start of rows in JVRP

55

If #STOICMAT is set to ON, the stoichiometric formulation allows a direct computation of the
derivatives with respect to rate coefficients.

The subroutine dFun_dRcoeff computes the partial derivative DFDR of the ODE function with
respect to a subset of NCOEFF reaction coefficients, whose indices are specified in the array

DFDR = 𝜕Vdot/𝜕RCT(JCOEFF)

Similarly one can obtain the partial derivative of the Jacobian with respect to a subset of the
rate coefficients. More exactly, KPP generates the subroutine dJacR_dCoeff, which calculates
DJDR, the product of this partial derivative with a user-supplied vector U:

DJDR = [𝜕JVS/𝜕RCT(JCOEFF)]× U

ROOT_Stochastic

If the generation of stochastic functions is switched on (i.e. when the command #STOCHASTIC
ON is added to the KPP definition file), KPP produces the file ROOT_Stochastic.f90 (or .
F90), with the following functions:

Propensity calculates the propensity vector. The propensity function uses the number of
molecules of variable (Nmlcv) and fixed (Nmlcf) species, as well as the stochastic rate coef-
ficients (SCT) to calculate the vector of propensity rates (Propensity). The propensity Propj
defines the probability that the next reaction in the system is the 𝑗𝑡ℎ reaction.

StochasticRates converts deterministic rates to stochastic. The stochastic rate coefficients
(SCT) are obtained through a scaling of the deterministic rate coefficients (RCT). The scaling
depends on the Volume of the reaction container and on the number of molecules which react.

MoleculeChange calculates changes in the number of molecules. When the reaction with index
IRCT takes place, the number of molecules of species involved in that reaction changes. The
total number of molecules is updated by the function.

These functions are used by the Gillespie numerical integrators (direct stochastic simulation
algorithm). These integrators are provided in both Fortran90 and C implementations (the tem-
plate file name is gillespie). Drivers for stochastic simulations are also implemented (the
template file name is general_stochastic.).

ROOT_Util

In addition to the chemical system description routines discussed above, KPP generates several
utility subroutines and functions in the file ROOT_Util.f90 (or .F90).

56

Table 18: Fortran90 subroutines and functions in ROOT_Util

Function Description
GetMass Check mass balance for selected atoms
Shuffle_kpp2user Shuffle concentration vector
Shuffle_user2kpp Shuffle concentration vector
InitSaveData Utility for #LOOKAT command
SaveData Utility for #LOOKAT command
CloseSaveData Utility for #LOOKAT command
tag2num Calculate reaction number from equation tag
Integrator_Update_Options Choose Update_RCONST/PHOTO/SUN

The subroutines InitSaveData, SaveData, and CloseSaveData can be used to print the con-
centration of the species that were selected with #LOOKAT to the file ROOT.dat (cf. #LOOKAT
and #MONITOR).

ROOT_mex_Fun, ROOT_mex_Jac_SP, and ROOT_mex_Hessian

Mex is a Matlab extension. KPP generates the mex routines for the ODE function, Jacobian, and
Hessian, for the target languages C, Fortran77, and Fortran90.

Tip: To generate Mex files, add the command #MEX ON to the KPP definition file.

After compilation (using Matlab’s mex compiler) the mex functions can be called instead of the
corresponding Matlab m-functions. Since the calling syntaxes are identical, the user only has to
insert the mex string within the corresponding function name. Replacing m-functions by mex-
functions gives the same numerical results, but the computational time could be considerably
smaller, especially for large kinetic systems.

If possible we recommend to build mex files using the C language, as Matlab offers most mex
interface options for the C language. Moreover, Matlab distributions come with a native C
compiler (lcc) for building executable functions from mex files. The mex files built using
Fortran90 may require further platform-specific tuning of the mex compiler options.

5.2 The C code

Important: Some run-time options for C-language integrators (specified in the ICNTRL and
RCNTRL arrays) do not exactly correspond to the Fortran90 run-time options. We will stan-
dardize run-time integrator options across all target languages in a future KPP release.

The driver file ROOT.c contains the main (driver) program and numerical integrator functions,
as well as declarations and initializations of global variables.

57

The generated C code includes three header files which are #include-d in other files as appro-
priate.

1. The global parameters (cf. Parameters Declared in ROOT_Parameters) are #include-d
in the header file ROOT_Parameters.h

2. The global variables (cf. Global Variables Declared in ROOT_Global) are extern-
declared in ROOT_Global.h and declared in the driver file ROOT.c.

3. The header file ROOT_Sparse.h contains extern declarations of sparse data structures for
the Jacobian (cf. Sparse Jacobian Data Structures),Hessian (cf. Sparse Hessian Data)
and stoichiometric matrix (cf. Sparse Stoichiometric Matrix), and the Jacobian of reaction
products (cf. Sparse Data for Jacobian of Reactant Products). The actual declarations of
each datastructures is done in the corresponding files.

The code for the ODE function (see section ROOT_Function) is in ROOT_Function.c.
The code for the ODE Jacobian and sparse multiplications (cf. ROOT_Jacobian and
ROOT_JacobianSP) is in ROOT_Jacobian.c, and the declaration and initialization of the Ja-
cobian sparse data structures is in the file ROOT_JacobianSP.c. Similarly, the Hessian func-
tion and associated sparse multiplications (cf. ROOT_Hessian and ROOT_HessianSP) are in
ROOT_Hessian.c, and the declaration and initialization of Hessian sparse data structures are
in ROOT_HessianSP.c.

The file ROOT_Stoichiom.c contains the functions for reactant products and its Jacobian, and
derivatives with respect to rate coefficients (cf. ROOT_Stoichiom and ROOT_StoichiomSP) .
The declaration and initialization of the stoichiometric matrix and the associated sparse data
structures (cf. Sparse Stoichiometric Matrix) is done in ROOT_StoichiomSP.c.

Sparse linear algebra routines (cf. ROOT_LinearAlgebra) are in the file
ROOT_LinearAlgebra.c. The code to update the rate constants and user defined code
for rate laws is in ROOT_Rates.c.

Various utility and input/output functions (cf. ROOT_Util) are in ROOT_Util.c and
ROOT_Monitor.c.

Finally, mex gateway routines that allow the C implementation of the ODE function, Jacobian,
and Hessian to be called directly from Matlab (cf. ROOT_mex_Fun, ROOT_mex_Jac_SP, and
ROOT_mex_Hessian) are also generated (in the files ROOT_mex_Fun.c, ROOT_mex_Jac_SP.c,
and ROOT_mex_Hessian.c).

5.3 The Matlab code

Important: Some run-time options for Matlab-language integrators (specified in the ICNTRL
and RCNTRL arrays) do not exactly correspond to the Fortran90 run-time options. We will
standardize run-time integrator options across all target languages in a future KPP release.

Matlab6 provides a high-level programming environment that allows algorithm development,
numerical computations, and data analysis and visualization. The KPP-generated Matlab code

6 http://www.mathworks.com/products/matlab/

58

http://www.mathworks.com/products/matlab/

allows for a rapid prototyping of chemical kinetic schemes, and for a convenient analysis and
visualization of the results. Differences between different kinetic mechanisms can be easily un-
derstood. The Matlab code can be used to derive reference numerical solutions, which are then
compared against the results obtained with user-supplied numerical techniques. KPP/Matlab
can also be used to teach students fundamentals of chemical kinetics and chemical numerical
simulations.

Each Matlab function has to reside in a separate m-file. Function calls use the m-function-
file names to reference the function. Consequently, KPP generates one m-function-file for
each of the functions discussed in the sections entitled ROOT_Function , ROOT_Jacobian
and ROOT_JacobianSP, ROOT_Hessian and ROOT_HessianSP, ROOT_Stoichiom and
ROOT_StoichiomSP, ROOT_Util. The names of the m-function-files are the same as the names
of the functions (prefixed by the model name ROOT.

The variables of Parameters Declared in ROOT_Parameters are defined as Matlab global
variables and initialized in the file ROOT_parameter_defs.m. The variables of Global
Variables Declared in ROOT_Global are declared as Matlab global variables in the file
ROOT_global_defs.m. They can be accessed from within each Matlab function by using dec-
larations of the variables of interest.

The sparse data structures for the Jacobian (cf. Sparse Jacobian Data Structures), the Hessian
(cf. Sparse Hessian Data), the stoichiometric matrix (cf. Sparse Stoichiometric Matrix), and the
Jacobian of reaction (see Sparse Data for Jacobian of Reactant Products) are declared as Matlab
global variables in the file ROOT_Sparse_defs.m. They are initialized in separate m-files,
namely ROOT_JacobianSP.m, ROOT_HessianSP.m, and ROOT_StoichiomSP.m respectively.

Two wrappers (ROOT_Fun_Chem.m and ROOT_Jac_SP_Chem.m) are provided for interfacing the
ODE function and the sparse ODE Jacobian with Matlab’s suite of ODE integrators. Specifi-
cally, the syntax of the wrapper calls matches the syntax required by Matlab’s integrators like
ode15s. Moreover, the Jacobian wrapper converts the sparse KPP format into a Matlab sparse
matrix.

59

Table 19: List of Matlab model files

Function Description
ROOT.m Driver
ROOT_parameter_defs.m Global parameters
ROOT_global_defs.m Global variables
ROOT_sparse_defs.m Global sparsity data
ROOT_Fun_Chem.m Template for ODE function
ROOT_Fun.m ODE function
ROOT_Jac_Chem.m Template for ODE Jacobian
ROOT_Jac_SP.m Jacobian in sparse format
ROOT_JacobianSP.m Sparsity data structures
ROOT_Hessian.m ODE Hessian in sparse format
ROOT_HessianSP.m Sparsity data structures
ROOT_Hess_Vec.m Hessian action on vectors
ROOT_HessTR_Vec.m Transposed Hessian action on vectors
ROOT_stoichiom.m Derivatives of Fun and Jac w/r/t rate coefficients
ROOT_stochiomSP.m Sparse data
ROOT_ReactantProd.m Reactant products
ROOT_JacReactantProd.m Jacobian of reactant products
ROOT_Rates.m User-defined rate reaction laws
ROOT_Update_PHOTO.m Update photolysis rate coefficients
ROOT_Update_RCONST.m Update all rate coefficients
ROOT_Update_SUN.m Update sola intensity
ROOT_GetMass.m Check mass balance for selected atoms
ROOT_Initialize.m Set initial values
ROOT_Shuffle_kpp2user.m Shuffle concentration vector
ROOT_Shuffle_user2kpp.m Shuffle concentration vector

5.4 The Makefile

KPP produces a Makefile that allows for an easy compilation of all KPP-generated source files.
The file name is Makefile_ROOT. The Makefile assumes that the selected driver contains the
main program. However, if no driver was selected (i.e. #DRIVER none), it is necessary to add
the name of the main program file manually to the Makefile.

5.5 The log file

The log file ROOT.log contains a summary of all the functions, subroutines and data structures
defined in the code file, plus a summary of the numbering and category of the species involved.

This file contains supplementary information for the user. Several statistics are listed here, like
the total number equations, the total number of species, the number of variable and fixed species.
Each species from the chemical mechanism is then listed followed by its type and numbering.

Furthermore it contains the complete list of all the functions generated in the target source file.

60

For each function, a brief description of the computation performed is attached containing also
the meaning of the input and output parameters.

5.6 Output from the Integrators (ISTATUS and RSTATUS)

In order to obtain more information about the integration, KPP provides the arrays ISTATUS
(integer) and RSTATUS (real). Each of them is an array of 20 elements. Array elements not
listed here are currently not used. Details can be found in the comment lines of the individual
integrator files in $KPP_HOME/int/.

ISTATUS

Table 20: Summary of ISTATUS usage in the f90 integrators.
Here, Y = used.

ISTATUS 1 2 3 4 5 6 7 8 9
beuler Y Y Y Y Y Y Y Y
dvode
exponential
feuler
gillespie
lsode Y Y Y
radau5 Y Y Y Y Y Y Y Y
rosenbrock_adj Y Y Y Y Y Y Y Y
rosenbrock Y Y Y Y Y Y Y Y
rosenbrock_tlm Y Y Y Y Y Y Y Y Y
rosenbrock_autoreduce Y Y Y Y Y Y Y Y
runge_kutta_adj Y Y Y Y Y Y Y Y
runge_kutta Y Y Y Y Y Y Y Y
runge_kutta_tlm Y Y Y Y Y Y Y Y
sdirk4 Y Y Y Y Y Y Y Y
sdirk_adj Y Y Y Y Y Y Y Y
sdirk Y Y Y Y Y Y Y Y
sdirk_tlm Y Y Y Y Y Y Y Y
seulex Y Y Y Y Y Y Y
tau_leap

ISTATUS(1)

Number of function calls.

ISTATUS(2)

Number of Jacobian calls.

ISTATUS(3)

Number of steps.

61

ISTATUS(4)

Number of accepted steps.

ISTATUS(5)

Number of rejected steps (except at very beginning).

ISTATUS(6)

Number of LU decompositions.

ISTATUS(7)

Number of forward/backward substitutions.

ISTATUS(8)

Number of singular matrix decompositions.

ISTATUS(9)

Number of Hessian calls.

ISTATUS(10) ... ISTATUS(20)

Currently not used.

RSTATUS

Table 21: Summary of RSTATUS usage in the f90 integra-
tors. Here, Y = used, s = solver specific usage.

RSTATUS 1 2 3 4
beuler Y Y Y
dvode
exponential
feuler
gillespie
lsode Y Y
radau5
rosenbrock_adj Y Y Y
rosenbrock Y Y Y
rosenbrock_tlm Y Y Y
rosenbrock_autoreduce Y Y Y s
runge_kutta_adj Y Y Y
runge_kutta Y Y Y
runge_kutta_tlm Y Y Y
sdirk4 Y Y
sdirk_adj Y Y Y
sdirk Y Y Y
sdirk_tlm Y Y Y
seulex
tau_leap

62

RSTATUS(1)

Texit, the time corresponding to the computed 𝑌 upon return.

RSTATUS(2)

Hexit: the last accepted step before exit.

RSTATUS(3)

Hnew: The last predicted step (not yet taken. For multiple restarts, use Hnew as Hstart
in the subsequent run.

RSTATUS(4)

(Solver-specific for rosenbrock_autoreduce) AR_thr: used to output the calculated
(used) auto-reduction threshold for the integration. Useful when ICNTRL(10) > 0where
the threshold is dynamically determined based on a given species.

RSTATUS(5) ... RSTATUS(20)

Currently not used.

6 Information for KPP developers

This chapter describes the internal architecture of the KPP preprocessor, the basic modules and
their functionalities, and the preprocessing analysis performed on the input files. KPP can be
very easily configured to suit a broad class of users.

6.1 KPP directory structure

The KPP distribution will unfold a directory $KPP_HOME with the following subdirectories:

src/

Contains the KPP source code files:

63

Table 22: KPP source code files

File Description
kpp.c Main program
code.c generic code generation functions
code.h Header file
code_c.c Generation of C code
code_f90.c Generation of F90 code
code_matlab.c Generation of Matlab code
debug.c Debugging output
gdata.h Header file
gdef.h Header file
gen.c Generic code generation functions
lex.yy.c Flex generated file
scan.h Input for Flex and Bison
scan.l Input for Flex
scan.y Input for Bison
scanner.c Evaluate parsed input
scanutil.c Evaluate parsed input
y.tab.c Bison generated file
y.tab.h Bison generated header file

bin/

Contains the KPP executable. This directory should be added to the PATH environment
variable.

util/

Contains different function templates useful for the simulation. Each template file has a
suffix that matches the appropriate target language (Fortran90, C, or Matlab). KPP will
run the template files through the substitution preprocessor (cf. List of symbols replaced
by the substitution preprocessor). The user can define their own auxiliary functions by
inserting them into the files.

models/

Contains the description of the chemical models. Users can define their own models by
placing the model description files in this directory. The KPP distribution contains several
models from atmospheric chemistry which can be used as templates for model definitions.

drv/

Contains driver templates for chemical simulations. Each driver has a suffix that matches
the appropriate target language (Fortran90, C, or Matlab). KPP will run the appropriate
driver through the substitution preprocessor (cf. List of symbols replaced by the substitu-
tion preprocessor). Users can also define their own driver templates here.

int/

Contains numerical solvers (integrators). The #INTEGRATOR command will force KPP to
look into this directory for a definition file with suffix .def. This file selects the numerical
solver etc. Each integrator template is found in a file that ends with the appropriate suffix

64

(.f90, .c, or .m). The selected template is processed by the substitution preprocessor
(cf. List of symbols replaced by the substitution preprocessor). Users can define their
own numerical integration routines in the user_contributed subdirectory.

examples/

Contains several model description examples (.kpp files) which can be used as templates
for building simulations with KPP.

site-lisp/

Contains the file kpp.el which provides a KPP mode for emacs with color highlighting.

ci-tests/

Contains directories defining several Continuous integration tests.

.ci-pipelines/

Hidden directory containing a YAML file with settings for automatically running the con-
tinuous integration tests on Azure DevOps Pipelines7

Also contains bash scripts (ending in .sh) for running the continuous integration tests
either automatically in Azure Dev Pipelines, or manually from the command line. For
more information, please see Continuous integration tests.

6.2 KPP environment variables

In order for KPP to find its components, it has to know the path to the location where the KPP
distribution is installed. This is achieved by setting the $KPP_HOME environment variable to the
path where KPP is installed.

The $KPP_HOME/bin directory. should be added to the PATH variable.

There are also several optional environment variable that control the places where KPP looks
for module files, integrators, and drivers:

KPP_HOME

Required, stores the absolute path to the KPP distribution.

Default setting: none.

KPP_FLEX_LIB_DIR

Optional. Use this to specify the path to the flex library file (libfl.so or libfl.a)
that are needed to build the KPP executable. The KPP build sequence will use the path
contained in KPP_FLEX_LIB_DIR if the flex library file cannot be found in /usr/lib,
/usr/lib64, and similar standard library paths.

KPP_MODEL

Optional, specifies additional places where KPP will look for model files before searching
the default location.

Default setting: $KPP_HOME/models.

7 https://azure.microsoft.com/en-us/services/devops/pipelines/

65

https://azure.microsoft.com/en-us/services/devops/pipelines/

KPP_INT

Optional, specifies additional places where KPP will look for integrator files before
searching the default.

Default setting: $KPP_HOME/int.

KPP_DRV

Optional specifies additional places where KPP will look for driver files before searching
the default directory.

Default setting: $KPP_HOME/drv.

6.3 KPP internal modules

Scanner and parser

This module is responsible for reading the kinetic description files and extracting the information
necessary in the code generation phase. We make use of the flex and bison generic tools in
implementing our own scanner and parser. Using these tools, this module gathers information
from the input files and fills in the following data structures in memory:

• The atom list

• The species list

• The left hand side matrix of coefficients

• The right hand side matrix of coefficients

• The equation rates

• The option list

Error checking is performed at each step in the scanner and the parser. For each syntax error
the exact line and input file, along with an appropriate error message are produced. Some other
errors like mass balance, and equation duplicates, are tested at the end of this phase.

Species reordering

When parsing the input files, the species list is updated as soon as a new species is encountered
in a chemical equation. Therefore the ordering of the species is the order in which they appear
in the equation description section. This is not a useful order for subsequent operations. The
species have to be first sorted such that all variable species and all fixed species are put together.
Then if a sparsity structure of the Jacobian is required, it might be better to reorder the species
in such a way that the factorization of the Jacobian will preserve the sparsity. This reordering
is done using a Markovitz type algorithm.

66

Expression trees computation

This is the core of the preprocessor. This module generates the production/destruction func-
tions, the Jacobian and all the data structure nedeed by these functions. It builds a language-
independent structure of each function and statement in the target source file. Instead of using
an intermediate format for this as some other compilers do, KPP generates the intermediate for-
mat for just one statement at a time. The vast majority of the statements in the target source
file are assignments. The expression tree for each assignment is incrementally built by scanning
the coefficient matrices and the rate constant vector. At the end, these expression trees are sim-
plified. Similar approaches are applied to function declaration and prototypes, data declaration
and initialization.

Code generation

There are basically two modules, each dealing with the syntax particularities of the target lan-
guage. For example, the C module includes a function that generates a valid C assignment when
given an expression tree. Similarly there are functions for data declaration, initializations, com-
ments, function prototypes, etc. Each of these functions produce the code into an output buffer.
A language-specific routine reads from this buffer and splits the statements into lines to improve
readability of the generated code.

6.4 Adding new KPP commands

To add a new KPP command, the source code has to be edited at several locations. A short
summary is presented here, using NEWCMD as an example:

• Add the new command to several files in the src/ directory:

– scan.h: add void CmdNEWCMD(char *cmd);

– scan.l: add { "NEWCMD", PRM_STATE, NEWCMD },

– scanner.c: add void CmdNEWCMD(char *cmd)

– scan.y:

∗ Add %token NEWCMD

∗ Add | NEWCMD PARAMETER

∗ Add { CmdNEWCMD($2); }

• Add Continuous integration tests:

– Create a new directory ci-tests/ros_newcmd/ros_newcmd.kpp

– Add new Continuous integration tests to the ci-tests directory and update the
scripts in the .ci-pipelines directory.

• Other:

– Explain in user manual docs/source/*/*.rst:

67

∗ Add to Table Default values for KPP commands

∗ Add a new subsection to KPP commands

∗ Add to the Table BNF description of the KPP language

– Add to site-lisp/kpp.el

6.5 Continuous integration tests

KPP contains several continuous integration (aka C-I) tests. Each C-I test calls KPP to generate
source code for a given chemical mechanism, integrator, and target language, and then runs a
short “box model” simulation with the generated code. C-I tests help to ensure that new features
and updates added to KPP will not break any existing functionality.

The continuous integration tests will run automatically on Azure DevOps Pipelines8 each time
a commit is pushed to the KPP Github repository9. You can also run the integration tests locally
on your own computer.

List of continuous integration tests

Table 23: Continuous integration tests

C-I test Language Model Integrator
C_rk C small_strato runge_kutta
C_rosadj C small_strato rosenbrock_adj
C_sd C small_strato sdirk
C_sdadj C small_strato sdirk_adj
C_small_strato C small_strato rosenbrock
F90_lsode Fortran90 small_strato lsode
F90_radau Fortran90 saprc99 radau5
F90_rk Fortran90 small_strato runge_kutta
F90_rktlm Fortran90 small_strato runge_kutta_tlm
F90_ros Fortran90 small_strato rosenbrock
F90_ros_autoreduce Fortran90 saprc99 rosenbrock_autoreduce
F90_ros_split Fortran90 small_strato rosenbrock
F90_ros_upcase Fortran90 saprc99 rosenbrock
F90_rosadj Fortran90 small_strato rosenbrock_adj
F90_rosenbrock Fortran90 saprc99 rosenbrock
F90_rostlm Fortran90 small_strato rosenbrock_tlm
F90_saprc_2006 Fortran90 saprcnov rosenbrock
F90_sd Fortran90 small_strato sdirk
F90_sdadj Fortran90 small_strato sdirk_adj
F90_seulex Fortran90 saprcnov seulex
F90_small_strato Fortran90 small_strato rosenbrock
X_minver Fortran90 small_strato runge_kutta

8 https://azure.microsoft.com/en-us/services/devops/pipelines/
9 https://github.com/KineticPreProcessor/KPP

68

https://azure.microsoft.com/en-us/services/devops/pipelines/
https://github.com/KineticPreProcessor/KPP

Notes about C-I tests:

1. F90_ros_split also uses #FUNCTION SPLIT.

2. F90_ros_upcase also uses #UPPERCASEF90 ON.

3. F90_small_strato is the example from Running KPP with an example stratospheric
mechanism.

4. X_minver tests if the #MINVERSION command works properly.

Each continuous integration test is contained in a subdirectory of $KPP_HOME/ci-tests. In
each subdirectory is a KPP definition file (ending in .kpp).

Running continuous integration tests on Azure DevOps Pipelines

The files needed to run the C-I tests are located in the $KPP_HOME/.ci-pipelines directory:

Table 24: Files needed to execute C-I tests

File Description
DockerfileFile containing specifications for the Docker container that will be used to run

C-I tests on Azure DevOps Pipelines. Also contains commands needed to run
the C-I scripts in the Docker container.

build_testing.
yml

Contains options for triggering C-I tests on Azure DevOps Pipelines.

ci-testing-script.
sh

Driver script for running C-I tests. Can be used on Azure DevOps Pipelines or
on a local computer.

ci-cleanup-script.
sh

Script to remove compiler-generated files (e.g. *.o, .mod, and .exe) from C-I
test folders.

ci-common-defs.
sh

Script with common variable and function definitions needed by
ci-testing-script.sh and ci-cleanup-script.sh.

The Dockerfile contains the software environment for Azure DevOps Pipelines10. You should
not have to update this file.

File build_testing.yml defines the runtime options for Azure DevOps Pipelines. The fol-
lowing settings determine which branches will trigger C-I tests:

Run a C-I test when a push to any branch is made.
trigger:
branches:
include:

- '*'
pr:
branches:
include:
- '*'

10 https://azure.microsoft.com/en-us/services/devops/pipelines/

69

https://azure.microsoft.com/en-us/services/devops/pipelines/

Currently this is set to trigger the C-I tests when a commit or pull request is made to any branch
of https://github.com/KineticPreProcessor/KPP. This is the recommended setting, but you can
restrict this so that only pushes or pull requests to certain branches will trigger the C-I tests.

The script ci-testing-script.sh executes all of the C-I tests whenever a push or a pull
request is made to the selected branches in the KPP Github repository.

Running continuous integration tests locally

To run the C-I tests on a local computer system, use this command:

$ $KPP_HOME/.ci-pipelines/ci-testing-script.sh | tee ci-tests.log

This will run all C-I tests on your own computer system and pipe the results to a log file. This
will easily allow you to check if the results of the C-I tests are identical to C-I tests that were
run on a prior commit or pull request.

To remove the files generated by the continuous integration tests, use this command:

$ $KPP_HOME/.ci-pipelines/ci-cleanup-script.sh

If you add new C-I tests, be sure to add the name of the new tests to the variable GENERAL_TESTS
in ci-common-defs.sh.

7 Numerical methods

The KPP numerical library contains a set of numerical integrators selected to be very efficient
in the low to medium accuracy regime (relative errors ∼ 10−2 . . . 10−5). In addition, the KPP
numerical integrators preserve the linear invariants (i.e., mass) of the chemical system.

KPP implements several Rosenbrock methods: ROS–2 (Verwer et al. [1999]), ROS–3 (Sandu
et al. [1997]), RODAS–3 (Sandu et al. [1997]), ROS–4 (Hairer and Wanner [1991]), and RO-
DAS–4 (Hairer and Wanner [1991]). For each of them KPP implements the tangent linear model
(direct decoupled sensitivity) and the adjoint models. The implementations distinguish between
sensitivities with respect to initial values and sensitivities with respect to parameters for effi-
ciency.

Note that KPP produces the building blocks for the simulation and also for the sensitivity calcu-
lations. It also provides application programming templates. Some minimal programming may
be required from the users in order to construct their own application from the KPP building
blocks.

The symbols used in the formulas of the following sections are:

70

https://github.com/KineticPreProcessor/KPP

Table 25: Symbols used in numerical methods

Symbol Description
𝑠 Number of stages
𝑡𝑛 Discrete time moment
ℎ Time step ℎ = 𝑡𝑛+1 − 𝑡𝑛

𝑦𝑛 Numerical solution (concentration) at 𝑡𝑛
𝛿𝑦𝑛 tangent linear solution at 𝑡𝑛
𝜆𝑛 Adjoint numerical solution at 𝑡𝑛
𝑓(·, ·) The ODE derivative function: 𝑦′ = 𝑓(𝑡, 𝑦)
𝑓𝑡(·, ·) Partial time derivative 𝑓𝑡(𝑡, 𝑦) = 𝜕𝑓(𝑡, 𝑦)/𝜕𝑡
𝐽(·, ·) The Jacobian 𝐽(𝑡, 𝑦) = 𝜕𝑓(𝑡, 𝑦)/𝜕𝑦
𝐽𝑡(·, ·) Partial time derivative of Jacobian 𝐽𝑡(𝑡, 𝑦) = 𝜕𝐽(𝑡, 𝑦)/𝜕𝑡
𝐴 The system matrix
𝐻(·, ·) The Hessian 𝐻(𝑡, 𝑦) = 𝜕2𝑓(𝑡, 𝑦)/𝜕𝑦2

𝑇𝑖 Internal stage time moment for Runge-Kutta and Rosenbrock methods
𝑌𝑖 Internal stage solution for Runge-Kutta and Rosenbrock methods
𝑘𝑖, ℓ𝑖, 𝑢𝑖, 𝑣𝑖 Internal stage vectors for Runge-Kutta and Rosenbrock methods, their

tangent linear and adjoint models
𝛼𝑖, 𝛼𝑖𝑗 , 𝑎𝑖𝑗 , 𝑏𝑖, 𝑐𝑖,
𝑐𝑖𝑗 , 𝑒𝑖, 𝑚𝑖

Method coefficients

7.1 Rosenbrock methods

Integrator file: int/rosenbrock.f90

An 𝑠-stage Rosenbrock method (cf. Section IV.7 in Hairer and Wanner [1991]) computes the
next-step solution by the formulas

𝑦𝑛+1 = 𝑦𝑛 +
𝑠∑︁

𝑖=1

𝑚𝑖𝑘𝑖 , Err𝑛+1 =
𝑠∑︁

𝑖=1

𝑒𝑖𝑘𝑖

𝑇𝑖 = 𝑡𝑛 + 𝛼𝑖ℎ , 𝑌𝑖 = 𝑦𝑛 +
𝑖−1∑︁
𝑗=1

𝑎𝑖𝑗𝑘𝑗 ,

𝐴 =

[︂
1

ℎ𝛾
− 𝐽𝑇 (𝑡𝑛, 𝑦𝑛)

]︂
𝐴 · 𝑘𝑖 = 𝑓 (𝑇𝑖, 𝑌𝑖) +

𝑖−1∑︁
𝑗=1

𝑐𝑖𝑗
ℎ
𝑘𝑗 + ℎ𝛾𝑖𝑓𝑡 (𝑡

𝑛, 𝑦𝑛) .

where 𝑠 is the number of stages, 𝛼𝑖 =
∑︀

𝑗 𝛼𝑖𝑗 and 𝛾𝑖 =
∑︀

𝑗 𝛾𝑖𝑗 . The formula coefficients (𝑎𝑖𝑗
and 𝛾𝑖𝑗) give the order of consistency and the stability properties. 𝐴 is the system matrix (in the
linear systems to be solved during implicit integration, or in the Newton’s method used to solve
the nonlinear systems). It is the scaled identity matrix minus the Jacobian.

The coefficients of the methods implemented in KPP are shown below:

71

ROS-2

• Stages (𝑠): 2

• Funcion calls: 2

• Order: 2(1)

• Stability properties: L-stable

• Method Coefficients:
𝛾 = 1 + 1/𝑠𝑞𝑟𝑡2 𝑎2,1 = 1/𝛾 𝑐2,1 = −2/𝛾

𝑚1 = 3/(2𝛾) 𝑚2 = 1/(2𝛾) 𝑒1 = 1/(2𝛾)

𝑒2 = 1/(2𝛾) 𝛼1 = 0 𝛼2 = 1

𝛾1 = 𝛾 𝛾2 = −𝛾

ROS-3

• Stages (𝑠): 3

• Funcion calls: 2

• Order: 3(2)

• Stability properties: L-stable

• Method Coefficients:
𝑎2,1 = 1 𝑎3,1 = 1 𝑎3,2 = 0

𝑐2,1 = −1.015 𝑐3,1 = 4.075 𝑐3,2 = 9.207

𝑚1 = 1 𝑚2 = 6.169 𝑚3 = −0.427

𝑒1 = 0.5 𝑒2 = −2.908 𝑒3 = 0.223

𝑎𝑙𝑝ℎ𝑎1 = 0 𝛼2 = 0.436 𝛼3 = 0.436

𝛾1 = 0.436 𝛾2 = 0.243 𝛾3 = 2.185

ROS-4

• Stages (𝑠): 4

• Funcion calls: 3

• Order: 4(3)

• Stability properties: L-stable

• Method Coefficients:

72

𝑎2,1 = 2 𝑎3,1 = 1.868 𝑎3,2 = 0.234

𝑎4,1 = 𝑎3,1 𝑎4,2 = 𝑎3,2 𝑎4,3 = 0

𝑐2,1 = −7.137 𝑐3,1 = 2.581 𝑐3,2 = 0.652

𝑐4,1 = −2.137 𝑐4,2 = −0.321 𝑐4,3 = −0.695

𝑚1 = 2.256 𝑚2 = 0.287 𝑚3 = 0.435

𝑚4 = 1.094 𝑒1 = −0.282 𝑒2 = −0.073

𝑒3 = −0.108 𝑒4 = −1.093 𝛼1 = 0

𝛼2 = 1.146 𝛼3 = 0.655 𝛼4 = 𝛼3

𝛾1 = 0.573 𝛾2 = −1.769 𝛾3 = 0.759

𝛾4 = −0.104

RODAS-3

• Stages (𝑠): 4

• Funcion calls: 3

• Order: 3(2)

• Stability properties: Stiffly-accurate

• Method Coefficients:
𝑎2,1 = 0 𝑎3,1 = 2 𝑎3,2 = 0

𝑎4,1 = 2 𝑎4,2 = 0 𝑎4,3 = 1

𝑐2,1 = 4 𝑐3,1 = 1 𝑐3,2 = −1

𝑐4,1 = 1 𝑐4,2 = −1 𝑐4,3 = −8/3

𝑚1 = 2 𝑚2 = 0 𝑚3 = 1

𝑚4 = 1 𝑒1 = 0 𝑒2 = 0

𝑒3 = 0 𝑒4 = 1 𝛼1 = 0

𝛼2 = 0 𝛼3 = 1 𝛼4 = 1

𝛾1 = 0.5 𝛾2 = 1.5 𝛾3 = 0

𝛾4 = 0

RODAS-4

• Stages (𝑠): 6

• Funcion calls: 5

• Order: 4(3)

• Stability properties: Stiffly-accurate

• Method Coefficients:

73

𝛼1 = 0 𝛼2 = 0.386 𝛼3 = 0.210

𝛼4 = 0.630 𝛼5 = 1 𝛼6 = 1

𝛾1 = 0.25 𝛾2 = −0.104 𝛾3 = 0.104

𝛾4 = −0.036 𝛾5 = 0 𝛾6 = 0

𝑎2,1 = 1.544 𝑎3,1 = 0.946 𝑎3,2 = 0.255

𝑎4,1 = 3.314 𝑎4,2 = 2.896 𝑎4,3 = 0.998

𝑎5,1 = 1.221 𝑎5,2 = 6.019 𝑎5,3 = 12.537

𝑎5,4 = −0.687 𝑎6,1 = 𝑎5,1 𝑎6,2 = 𝑎5,2

𝑎6,3 = 𝑎5,3 𝑎6,4 = 𝑎5,4 𝑎6,5 = 1

𝑐2,1 = −5.668 𝑐3,1 = −2.430 𝑐3,2 = −0.206

𝑐4,1 = −0.107 𝑐4,2 = −9.594 𝑐4,3 = −20.47

𝑐5,1 = 7.496 𝑐5,2 = −0.124 𝑐5,3 = −34

𝑐5,4 = 11.708 𝑐6,1 = 8.083 𝑐6,2 = −7.981

𝑐6,3 = −31.521 𝑐6,4 = 16.319 𝑐6,5 = −6.058

𝑚1 = 𝑎5,1 𝑚2 = 𝑎5,2 𝑚3 = 𝑎5,3

𝑚4 = 𝑎5,4 𝑚5 = 1 𝑚6 = 1

𝑒1 = 0 𝑒2 = 0 𝑒3 = 0

𝑒4 = 0 𝑒5 = 0 𝑒6 = 1

Rosenbrock tangent linear model

Integrator file: int/rosenbrock_tlm.f90

The Tangent Linear method is combined with the sensitivity equations. One step of the method
reads:

𝛿𝑦𝑛+1 = 𝛿𝑦𝑛 +
𝑠∑︁

𝑖=1

𝑚𝑖ℓ𝑖

𝑇𝑖 = 𝑡𝑛 + 𝛼𝑖ℎ , 𝛿𝑌𝑖 = 𝛿𝑦𝑛 +
𝑖−1∑︁
𝑗=1

𝑎𝑖𝑗ℓ𝑗

𝐴 · ℓ𝑖 = 𝐽 (𝑇𝑖, 𝑌𝑖) · 𝛿𝑌𝑖 +
𝑖−1∑︁
𝑗=1

𝑐𝑖𝑗
ℎ
ℓ𝑗

+(𝐻(𝑡𝑛, 𝑦𝑛)× 𝑘𝑖) · 𝛿𝑦𝑛 + ℎ𝛾𝑖𝐽𝑡 (𝑡
𝑛, 𝑦𝑛) · 𝛿𝑦𝑛

The method requires a single n times n LU decomposition per step to obtain both the concen-
trations and the sensitivities.

KPP contains tangent linear models (for direct decoupled sensitivity analysis) for each of the
Rosenbrock methods (ROS-2, ROS-3, ROS-4, RODAS-3, and RODAS-4). The implementations
distinguish between sensitivities with respect to initial values and sensitivities with respect to
parameters for efficiency.

74

Rosenbrock discrete adjoint model

Integrator file: int/rosenbrock_adj.f90

To obtain the adjoint we first differentiate the method with respect to 𝑦𝑛. Here 𝐽 denotes the
Jacobian and 𝐻 the Hessian of the derivative function 𝑓 . The discrete adjoint of the (non-
autonomous) Rosenbrock method is

𝐴 · 𝑢𝑖 = 𝑚𝑖𝜆
𝑛+1 +

𝑠∑︁
𝑗=𝑖+1

(︁
𝑎𝑗𝑖𝑣𝑗 +

𝑐𝑗𝑖
ℎ
𝑢𝑗

)︁
,

𝑣𝑖 = 𝐽𝑇 (𝑇𝑖, 𝑌𝑖) · 𝑢𝑖 , 𝑖 = 𝑠, 𝑠− 1, · · · , 1 ,

𝜆𝑛 = 𝜆𝑛+1 +
𝑠∑︁

𝑖=1

(𝐻(𝑡𝑛, 𝑦𝑛)× 𝑘𝑖)
𝑇 · 𝑢𝑖

+ℎ𝐽𝑇
𝑡 (𝑡

𝑛, 𝑦𝑛) ·
𝑠∑︁

𝑖=1

𝛾𝑖𝑢𝑖 +
𝑠∑︁

𝑖=1

𝑣𝑖

KPP contains adjoint models (for direct decoupled sensitivity analysis) for each of the Rosen-
brock methods (ROS-2, ROS-3, ROS-4, RODAS-3, RODAS-4).

Rosenbrock with mechanism auto-reduction

Integrator file: int/rosenbrock_autoreduce.f90

Mechanism auto-reduction (described in Lin et al. [2023]) expands previous work by Santillana
et al. [2010] and Shen et al. [2020] to a computationally efficient implementation in KPP,
avoiding memory re-allocation, re-compile of the code, and on-the-fly mechanism reduction
based on dynamically determined production and loss rate thresholds.

We define a threshold 𝛿 which can be fixed (as in Santillana et al. [2010]) or determined by the
production and loss rates of a “target species” scaled by a factor

𝛿 = 𝑚𝑎𝑥(𝑃𝑡𝑎𝑟𝑔𝑒𝑡, 𝐿𝑡𝑎𝑟𝑔𝑒𝑡) * 𝛼𝑡𝑎𝑟𝑔𝑒𝑡.

For each species 𝑖, the species is partitioned as “slow” iff.

𝑚𝑎𝑥(𝑃𝑖, 𝐿𝑖) < 𝛿

if the species is partitioned as “slow”, it is solved explicitly (decoupled from the rest of the
mechanism) using a first-order approximation. Otherwise, “fast” species are retained in the
implicit Rosenbrock solver.

75

7.2 Runge-Kutta (aka RK) methods

A general 𝑠-stage Runge-Kutta method is defined as (see Section II.1 of Hairer et al. [1987])

𝑦𝑛+1 = 𝑦𝑛 + ℎ

𝑠∑︁
𝑖=1

𝑏𝑖𝑘𝑖 ,

𝑇𝑖 = 𝑡𝑛 + 𝑐𝑖ℎ , 𝑌𝑖 = 𝑦𝑛 + ℎ

𝑠∑︁
𝑗=1

𝑎𝑖𝑗𝑘𝑗 ,

𝑘𝑖 = 𝑓 (𝑇𝑖, 𝑌𝑖) ,

where the coefficients 𝑎𝑖𝑗 , 𝑏𝑖 and 𝑐𝑖 are prescribed for the desired accuracy and stability proper-
ties. The stage derivative values 𝑘𝑖 are defined implicitly, and require solving a (set of) nonlinear
system(s). Newton-type methods solve coupled linear systems of dimension (at most) 𝑛× 𝑠.

The Runge-Kutta methods implemented in KPP are summarized below:

3-stage Runge-Kutta

Integrator file: int/runge_kutta.f90

Fully implicit 3-stage Runge-Kutta methods. Several variants are available:

• RADAU-2A: order 5

• RADAU-1A: order 5

• Lobatto-3C: order 4

• Gauss: order 6

RADAU5

Integrator file: int/radau5.f90

This Runge-Kutta method of order 5 based on RADAU-IIA quadrature is stiffly accurate. The
KPP implementation follows the original implementation of Hairer and Wanner [1991], Section
IV.10. While RADAU5 is relatively expensive (when compared to the Rosenbrock methods), it
is more robust and is useful to obtain accurate reference solutions.

SDIRK

Integrator file: int/sdirk.f90,

SDIRK is an L-stable, singly-diagonally-implicit Runge-Kutta method. The implementation is
based on Hairer and Wanner [1991]. Several variants are available:

• Sdirk 2a, 2b: 2 stages, order 2

• Sdirk 3a: 3 stages, order 2

• Sdirk 4a, 4b: 5 stages, order 4

76

SDIRK4

Integrator file: int/sdirk4.f90

SDIRK4 is an L-stable, singly-diagonally-implicit Runge-Kutta method of order 4. The imple-
mentation is based on Hairer and Wanner [1991].

SEULEX

Integrator file: int/seulex.f90

SEULEX is a variable order stiff extrapolation code able to produce highly accurate solutions.
The KPP implementation is based on the implementation of Hairer and Wanner [1991].

RK tangent linear model

The tangent linear method associated with the Runge-Kutta method is

𝛿𝑦𝑛+1 = 𝛿𝑦𝑛 + ℎ
𝑠∑︁

𝑖=1

𝑏𝑖ℓ𝑖 ,

𝛿𝑌𝑖 = 𝛿𝑦𝑛 + ℎ
𝑠∑︁

𝑗=1

𝑎𝑖𝑗ℓ𝑗 ,

ℓ𝑖 = 𝐽 (𝑇𝑖, 𝑌𝑖) · 𝛿𝑌𝑖 .

The system is linear and does not require an iterative procedure. However, even for a SDIRK
method (𝑎𝑖𝑗 = 0 for 𝑖 > 𝑗 and 𝑎𝑖𝑖 = 𝛾) each stage requires the LU factorization of a different
matrix.

RK discrete adjoint model

The first order Runge-Kutta adjoint is

𝑢𝑖 = ℎ 𝐽𝑇 (𝑇𝑖, 𝑌𝑖) ·

(︃
𝑏𝑖𝜆

𝑛+1 +
𝑠∑︁

𝑗=1

𝑎𝑗𝑖𝑢𝑗

)︃

𝜆𝑛 = 𝜆𝑛+1 +
𝑠∑︁

𝑗=1

𝑢𝑗 .

For 𝑏𝑖 ̸= 0 the Runge-Kutta adjoint can be rewritten as another Runge-Kutta method:

𝑢𝑖 = ℎ 𝐽𝑇 (𝑇𝑖, 𝑌𝑖) ·

(︃
𝜆𝑛+1 +

𝑠∑︁
𝑗=1

𝑏𝑗 𝑎𝑗𝑖
𝑏𝑖

𝑢𝑗

)︃

𝜆𝑛 = 𝜆𝑛+1 +
𝑠∑︁

𝑗=1

𝑏𝑗 𝑢𝑗 .

77

7.3 Backward differentiation formulas

Backward differentiation formulas (BDF) are linear multistep methods with excellent stability
properties for the integration of chemical systems (cf. Hairer and Wanner [1991], Section V.1).
The 𝑘-step BDF method reads

𝑘∑︁
𝑖=0

𝛼𝑖𝑦
𝑛−𝑖 = ℎ𝑛𝛽 𝑓 (𝑡𝑛, 𝑦𝑛)

where the coefficients 𝛼𝑖 and 𝛽 are chosen such that the method has order of consistency 𝑘.

The KPP library contains two off-the-shelf, highly popular implementations of BDF methods,
described in the following sections:

LSODE

Integrator file: int/lsode.f90

LSODE, the Livermore ODE solver (Radhakrishnan and Hindmarsh [1993]), implements back-
ward differentiation formula (BDF) methods for stiff problems. LSODE has been translated to
Fortran90 for the incorporation into the KPP library.

VODE

Integrator file: int/dvode.f90

VODE (Brown et al. [1989]) uses another formulation of backward differentiation formulas.
The version of VODE present in the KPP library uses directly the KPP sparse linear algebra
routines.

BEULER

Integrator file: int/beuler.f90

Backward Euler integration method.

7.4 Other integration methods

FEULER

Integrator file: int/feuler.f90

Forward Euler is an explicit integration method for non-stiff problems. FEULER computes 𝑦𝑛+1

as

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓 (𝑡𝑛, 𝑦𝑛)

78

8 BNF description of the KPP language

Following is the BNF-like specification of the KPP language:

program ::= module | module program

module ::= section | command |inline_code

section ::= #ATOMS atom_definition_list ␣
→˓ |

#CHECK atom_list ␣
→˓ |

#DEFFIX species_definition_list ␣
→˓ |

#DEFVAR species_definition_list ␣
→˓ |

#EQUATIONS equation_list ␣
→˓ |

#FAMILIES family_list ␣
→˓ |

#INITVALUES initvalues_list ␣
→˓ |

#LOOKAT species_list atom_list ␣
→˓ |

#MONITOR species_list atom_list ␣
→˓ |

#SETFIX species_list_plus ␣
→˓ |

#SETVAR species_list_plus

command ::= #CHECKALL ␣
→˓ |

#DECLARE [SYMBOL | VALUE] ␣
→˓ |

#DOUBLE [ON | OFF] ␣
→˓ |

#DRIVER driver_name ␣
→˓ |

#DUMMYINDEX [ON | OFF] ␣
→˓ |

#EQNTAGS [ON | OFF] ␣
→˓ |

#FUNCTION [AGGREGATE | SPLIT] ␣
→˓ |

#HESSIAN [ON | OFF] ␣
→˓ |

#INCLUDE file_name ␣
(continues on next page)

79

(continued from previous page)
→˓ |

#INTEGRATOR integrator_name ␣
→˓ |

#INTFILE integrator_name ␣
→˓ |

#JACOBIAN [OFF | FULL | SPARSE_LU_ROW |␣
→˓SPARSE_ROW] |

#LANGUAGE[Fortran90 | Fortran77 | C |␣
→˓Matlab] |

#LOOKATALL ␣
→˓ |

#MEX [ON | OFF] ␣
→˓ |

#MINVERSION minimum_version_number ␣
→˓ |

#MODEL model_name ␣
→˓ |

#REORDER [ON | OFF] ␣
→˓ |

#STOCHASTIC [ON | OFF] ␣
→˓ |

#STOICHMAT [ON | OFF] ␣
→˓ |

#UPPERCASEF90 [ON | OFF]

inline_code ::= #INLINE inline_type
inline_code
#ENDINLINE

atom_count ::= integer atom_name ␣
→˓ |

atom_name

atom_definition_list := atom_definition ␣
→˓ |

atom_definition_list

atom_list ::= atom_name; ␣
→˓ |

atom_name; atom_list

equation ::= <equation_tag> expression = expression :␣
→˓rate; |

expression = expression : rate;

equation_list ::= equation ␣

(continues on next page)

80

(continued from previous page)
→˓ |

equation equation_list

equation_tag ::= Alphanumeric expression, also including the
underscore. In scan.l it is defined as
"[a-zA-Z_0-0]+".

expression ::= term ␣
→˓ |

term + expression ␣
→˓ |

term - expression

initvalues_assignment := species_name_plus = program_expression; ␣
→˓ |

CFACTOR = program_expression

initvalues_list ::= initvalues_assignment ␣
→˓ |

initvalues_assignment initvalues_list

inline_type ::= F90_RATES | F90_RCONST | F90_GLOBAL ␣
→˓ |

F90_INIT | F90_DATA | F90_UTIL ␣
→˓ |

F77_RATES | F77_RCONST | F77_GLOBAL ␣
→˓ |

F77_INIT | F77_DATA | F77_UTIL ␣
→˓ |

C_RATES | C_RCONST | C_GLOBAL ␣
→˓ |

C_INIT | C_DATA | C_UTIL ␣
→˓ |

MATLAB_RATES | MATLAB_RCONST | MATLAB_
→˓GLOBAL |

MATLAB_INIT | MATLAB_DATA | MATLAB_UTIL

rate ::= number ␣
→˓ |

program_expression

species_composition ::= atom_count ␣
→˓ |

atom_count + species_composition ␣
→˓ |

IGNORE

(continues on next page)

81

(continued from previous page)

species_definition ::= species_name = species_composition;

species_definition_list := species_definition ␣
→˓ |

species_definition species_definition_list

species_list ::= species_name; ␣
→˓ |

species_name; species_list

species_list_plus ::= species_name_plus; ␣
→˓ |

species_name_plus; species_list_plus

species_name ::= Alphanumeric expression, also including the
underscore, starting with a letter. In
scan.l it is defined as "[a-zA-Z_][a-ZA-Z_0-

→˓9]*".
Its maximum length is 32.

species_name_plus ::= species_name ␣
→˓ |

VAR_SPEC ␣
→˓ |

FIX_SPEC ␣
→˓ |

ALL_SPEC

term ::= number species_name ␣
→˓ |

species_name ␣
→˓ |

PROD ␣
→˓ |

hv

82

9 Acknowledgements

This work has been supported by:

• The US EPA Science to Achieve Results (EPA-STAR)11 program (grant # R84001412);

• The NASA Modeling, Analysis, and Prediction (MAP)13 program;

• The NASA Atmospheric Composition Modeling and Analysis (ACMAP)14 program;

• The NASA Advanced Systems Information Technology (AIST)15 program (grant # AIST-
18-001116)

We thank Jason Lander for his suggestions how to migrate from yacc to bison.

We would also like to thank Lucas Estrada for his assistance in setting up the Continuous inte-
gration tests on Azure DevOps Pipelines17 and for assistance with debugging.

Shaddy Ahmed and Jennie Thomas helped us with the Matlab output of KPP.

We thank Domenico Taraborrelli for providing the rosenbrock_posdef_h211b_qssa solver.

Stuart Lacy wrote an export function for the Master Chemical Mechanism18. It creates KPP
files that can be used out-of-the-box for the small model in the examples/mcm directory.

Parts of this user manual are based on Damian-Iordache [1996].

10 References

11 Known Bugs

Bugs are discussed at the KPP repository Github issues page26.
11 https://www.epa.gov/research-grants/air-research-grants
12 https://cfpub.epa.gov/ncer_abstracts/index.cfm/fuseaction/display.abstractDetail/abstract_id/11083/report/0
13 https://map.nasa.gov
14 https://airbornescience.nasa.gov/category/Discipline/Atmospheric_Composition_Modeling_and_Analysis_

Program
15 https://esto.nasa.gov/aist
16 https://esto.nasa.gov/project-selections-for-aist-18/#martin
17 https://azure.microsoft.com/en-us/services/devops/pipelines/
18 https://mcm.york.ac.uk/MCM/export
26 https://github.com/KineticPreProcessor/KPP/issues/

83

https://www.epa.gov/research-grants/air-research-grants
https://cfpub.epa.gov/ncer_abstracts/index.cfm/fuseaction/display.abstractDetail/abstract_id/11083/report/0
https://map.nasa.gov
https://airbornescience.nasa.gov/category/Discipline/Atmospheric_Composition_Modeling_and_Analysis_Program
https://esto.nasa.gov/aist
https://esto.nasa.gov/project-selections-for-aist-18/#martin
https://esto.nasa.gov/project-selections-for-aist-18/#martin
https://azure.microsoft.com/en-us/services/devops/pipelines/
https://mcm.york.ac.uk/MCM/export
https://github.com/KineticPreProcessor/KPP/issues/

12 Support

The support guidelines can be found here27.

13 Contributing

The Contributing guidelines can be found here28.

14 Editing this User Guide

This user guide is generated with Sphinx29. Sphinx is an open-source Python project designed
to make writing software documentation easier. The documentation is written in a reStructured-
Text (it’s similar to markdown), which Sphinx extends for software documentation. The source
for the documentation is the docs/source directory in top-level of the source code.

14.1 Quick start

To build this user guide on your local machine, you need to install Sphinx. Sphinx is a Python 3
package and it is available via pip. This user guide uses the Read The Docs theme, so you will
also need to install sphinx-rtd-theme. It also uses the sphinxcontrib-bibtex30 and recom-
monmark31 extensions, which you’ll need to install.

$ cd $KPP_HOME/docs
$ pip install -r requirements.txt

Installing with requirements.txt will make sure that the proper versions of Sphinx and its
dependencies will be installed.

To build this user guide locally, navigate to the docs/ directory and make the html target.

$ cd $KPP_HOME/docs
$ make html

This will build the user guide in docs/build/html, and you can open index.html in your
web-browser. The source files for the user guide are found in docs/source.

Note: You can clean the documentation with make clean.

27 https://github.com/KineticPreProcessor/KPP/blob/main/SUPPORT.md
28 https://github.com/KineticPreProcessor/KPP/blob/main/CONTRIBUTING.md
29 https://www.sphinx-doc.org/
30 https://pypi.org/project/sphinxcontrib-bibtex/
31 https://recommonmark.readthedocs.io/

84

https://github.com/KineticPreProcessor/KPP/blob/main/SUPPORT.md
https://github.com/KineticPreProcessor/KPP/blob/main/CONTRIBUTING.md
https://www.sphinx-doc.org/
https://pypi.org/project/sphinxcontrib-bibtex/
https://recommonmark.readthedocs.io/
https://recommonmark.readthedocs.io/

14.2 Learning reST

Writing reST can be tricky at first. Whitespace matters, and some directives can be easily mis-
written. Two important things you should know right away are:

• Indents are 3-spaces

• “Things” are separated by 1 blank line. For example, a list or code-block following a
paragraph should be separated from the paragraph by 1 blank line.

You should keep these in mind when you’re first getting started. Dedicating an hour to learning
reST will save you time in the long-run. Below are some good resources for learning reST.

• reStructuredText primer32: (single best resource; however, it’s better read than skimmed)

• Official reStructuredText reference33 (there is a lot of information here)

• Presentation by Eric Holscher34 (co-founder of Read The Docs) at DjangoCon US 2015
(the entire presentation is good, but reST is described from 9:03 to 21:04)

• YouTube tutorial by Audrey Tavares’s35

A good starting point would be Eric Holscher’s presentations followed by the reStructuredText
primer.

14.3 Style guidelines

Important: This user guide is written in semantic markup. This is important so that the
user guide remains maintainable. Before contributing to this documentation, please review our
style guidelines (below). When editing the source, please refrain from using elements with the
wrong semantic meaning for aesthetic reasons. Aesthetic issues can be addressed by changes to
the theme.

For titles and headers:

• Section headers should be underlined by # characters

• Subsection headers should be underlined by - characters

• Subsubsection headers should be underlined by ^ characters

• Subsubsubsection headers should be avoided, but if necessary, they should be underlined
by " characters

File paths (including directories) occuring in the text should use the :file: role.

Program names (e.g. cmake) occuring in the text should use the :program: role.

OS-level commands (e.g. rm) occuring in the text should use the :command: role.
32 https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html
33 https://docutils.sourceforge.io/docs/user/rst/quickref.html
34 https://www.youtube.com/watch?v=eWNiwMwMcr4
35 https://www.youtube.com/watch?v=DSIuLnoKLd8

85

https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html
https://docutils.sourceforge.io/docs/user/rst/quickref.html
https://www.youtube.com/watch?v=eWNiwMwMcr4
https://www.youtube.com/watch?v=DSIuLnoKLd8

Environment variables occuring in the text should use the :envvar: role.

Inline code or code variables occuring in the text should use the :code: role.

Code snippets should use .. code-block:: <language> directive like so

.. code-block:: python

import gcpy
print("hello world")

The language can be “none” to omit syntax highlighting.

For command line instructions, the “console” language should be used. The $ should be used
to denote the console’s prompt. If the current working directory is relevant to the instructions,
a prompt like gcuser:~/path1/path2$ should be used.

Inline literals (e.g. the $ above) should use the :literal: role.

References

[Atkinson et al., 2004] Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson,
R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J. Evaluated kinetic
and photochemical data for atmospheric chemistry: volume I – gas phase reac-
tions of Ox, HOx, NOx, and SOx species. Atmos. Chem. Phys., 4:1461–1738, 2004.
doi:10.5194/ACP-4-1461-200419.

[Brown Byrne and Hindmarsh 1989] Brown, P. N., Byrne, G. D., and Hindmarsh, A. C. VODE:
a variable step ode solver. SIAM J. Sci. Stat. Comput., 10:1038–1051, 1989.

[Damian-Iordache 1996] Damian-Iordache, V. KPP – chemistry simulation development envi-
ronment. Master's thesis, University of Iowa, USA, 1996.

[Hairer Norsett and Wanner 1987] Hairer, E., Norsett, S. P., and Wanner, G. Solving Ordinary
Differential Equations I. Nonstiff Problems. Springer-Verlag, Berlin, 1987.

[Hairer and Wanner 1991] Hairer, E. and Wanner, G. Solving Ordinary Differential Equations
II. Stiff and Differential-Algebraic Problems. Springer-Verlag, Berlin, 1991.

[Lin et al., 2022] Lin, H., Long, M. S., Sander, R., Sandu, A., Yantosca, R. M., Estrada, L. A.,
Shen, L., and Jacob, D. J. An adaptive auto-reduction solver for speeding up in-
tegration of chemical kinetics in atmospheric chemistry models: implementation
and evaluation within the kinetic pre-processor (KPP) version 3.0.0. J. Adv. Model.
Earth Syst., pages 2022MS003293, 2023. doi:10.1029/2022MS00329320.

[Radhakrishnan and Hindmarsh 1993] Radhakrishnan, K. and Hindmarsh, A. Description and
use of LSODE, the Livermore solver for differential equations. NASA reference
publication 1327, 1993.

19 https://doi.org/10.5194/ACP-4-1461-2004
20 https://doi.org/10.1029/2022MS003293

86

https://doi.org/10.5194/ACP-4-1461-2004
https://doi.org/10.1029/2022MS003293

[Sander et al., 2005] Sander, R., Kerkweg, A., Jöckel, P., and Lelieveld, J. Technical note: the
new comprehensive atmospheric chemistry module MECCA. Atmos. Chem. Phys.,
5:445–450, 2005. doi:10.5194/ACP-5-445-200521.

[Sandu et al., 1996] Sandu, A., Potra, F. A., Damian, V., and Carmichael, G. R. Efficient imple-
mentation of fully implicit methods for atmospheric chemistry. J. Comput. Phys.,
129:101–110, 1996.

[Sandu and Sander 2006] Sandu, A. and Sander, R. Technical note: simulating chemical sys-
tems in fortran90 and matlab with the kinetic preprocessor kpp-2.1. Atmos. Chem.
Phys., 6:187–195, 2006. doi:10.5194/ACP-6-187-200622.

[Sandu et al., 1997b] Sandu, A., Verwer, J. G., Blom, J. G., Spee, E. J., Carmichael, G. R., and
Potra, F. A. Benchmarking stiff ODE solvers for atmospheric chemistry problems
II: Rosenbrock solvers. Atmos. Environ., 31:3459–3472, 1997. doi:10.1016/S1352-
2310(97)83212-823.

[Santillana et al., 2010] Santillana, M., Le Sager, P., Jacob, D. J., and Brenner, M. P.
An adaptive reduction algorithm for efficient chemical calculations in global
atmospheric chemistry models. Atmos. Environ., 44(35):4426–4431, 2010.
doi:10.1016/j.atmosenv.2010.07.04424.

[Shen et al., 2020] Shen, L., Jacob, D. J., Santillana, M., Wang, X., and Chen, W. An adaptive
method for speeding up the numerical integration of chemical mechanisms in at-
mospheric chemistry models: application to GEOS-Chem version 12.0.0. Geosci.
Model Dev., 13:2475–2486, 2020. doi:10.5194/gmd-13-2475-202025.

[Verwer et al., 1999] Verwer, J., Spee, E. J., Blom, J. G., and Hunsdorfer, W. A second order
rosenbrock method applied to photochemical dispersion problems. SIAM Journal
on Scientific Computing, 20:1456–1480, 1999.

21 https://doi.org/10.5194/ACP-5-445-2005
22 https://doi.org/10.5194/ACP-6-187-2006
23 https://doi.org/10.1016/S1352-2310(97)83212-8
24 https://doi.org/10.1016/j.atmosenv.2010.07.044
25 https://doi.org/10.5194/gmd-13-2475-2020

87

https://doi.org/10.5194/ACP-5-445-2005
https://doi.org/10.5194/ACP-6-187-2006
https://doi.org/10.1016/S1352-2310(97)83212-8
https://doi.org/10.1016/S1352-2310(97)83212-8
https://doi.org/10.1016/j.atmosenv.2010.07.044
https://doi.org/10.5194/gmd-13-2475-2020

Index

Symbols
.ci-pipelines/

command line option, 65
$KPP_HOME, 9, 63, 65
$PATH, 9

B
bin/

command line option, 64

C
ci-tests/

command line option, 65
command line option

.ci-pipelines/, 65
bin/, 64
ci-tests/, 65
drv/, 64
examples/, 65
ICNTRL(1), 39
ICNTRL(11), 40
ICNTRL(12), 40
ICNTRL(13), 40
ICNTRL(14), 40
ICNTRL(15), 40
ICNTRL(16), 40
ICNTRL(17), 41
ICNTRL(18), 41
ICNTRL(2), 39
ICNTRL(3), 40
ICNTRL(4), 40
ICNTRL(5), 40
ICNTRL(6), 40
int/, 64
ISTATUS(1), 61
ISTATUS(10), 62
ISTATUS(2), 61
ISTATUS(3), 61
ISTATUS(4), 61
ISTATUS(5), 62
ISTATUS(6), 62
ISTATUS(7), 62
ISTATUS(8), 62
ISTATUS(9), 62
KPP_DRV, 66

KPP_FLEX_LIB_DIR, 65
KPP_HOME, 65
KPP_INT, 65
KPP_MODEL, 65
models/, 64
RCNTRL(1), 42
RCNTRL(10), 43
RCNTRL(11), 43
RCNTRL(12), 43
RCNTRL(14), 43
RCNTRL(2), 42
RCNTRL(20), 43
RCNTRL(3), 42
RCNTRL(4), 42
RCNTRL(5), 43
RCNTRL(6), 43
RCNTRL(7), 43
RCNTRL(8), 43
RCNTRL(9), 43
RSTATUS(1), 62
RSTATUS(2), 63
RSTATUS(3), 63
RSTATUS(4), 63
RSTATUS(5), 63
site-lisp/, 65
src/, 63
util/, 64

D
drv/

command line option, 64

E
environment variable

$KPP_HOME, 9, 63, 65
$PATH, 9
FLEX_HOME, 7
FLEX_LIB_DIR, 7
KPP_FLEX_LIB_DIR, 4, 11, 12, 15, 65
KPP_HOME, 17
PATH, 64, 65

examples/
command line option, 65

88

F
FLEX_HOME, 7
FLEX_LIB_DIR, 7

I
ICNTRL(1)

command line option, 39
ICNTRL(11)

command line option, 40
ICNTRL(12)

command line option, 40
ICNTRL(13)

command line option, 40
ICNTRL(14)

command line option, 40
ICNTRL(15)

command line option, 40
ICNTRL(16)

command line option, 40
ICNTRL(17)

command line option, 41
ICNTRL(18)

command line option, 41
ICNTRL(2)

command line option, 39
ICNTRL(3)

command line option, 40
ICNTRL(4)

command line option, 40
ICNTRL(5)

command line option, 40
ICNTRL(6)

command line option, 40
int/

command line option, 64
ISTATUS(1)

command line option, 61
ISTATUS(10)

command line option, 62
ISTATUS(2)

command line option, 61
ISTATUS(3)

command line option, 61
ISTATUS(4)

command line option, 61
ISTATUS(5)

command line option, 62
ISTATUS(6)

command line option, 62
ISTATUS(7)

command line option, 62
ISTATUS(8)

command line option, 62
ISTATUS(9)

command line option, 62

K
KPP_DRV

command line option, 66
KPP_FLEX_LIB_DIR, 4, 11, 12, 15, 65

command line option, 65
KPP_HOME, 17

command line option, 65
KPP_INT

command line option, 65
KPP_MODEL

command line option, 65

M
models/

command line option, 64

P
PATH, 64, 65

R
RCNTRL(1)

command line option, 42
RCNTRL(10)

command line option, 43
RCNTRL(11)

command line option, 43
RCNTRL(12)

command line option, 43
RCNTRL(14)

command line option, 43
RCNTRL(2)

command line option, 42
RCNTRL(20)

command line option, 43
RCNTRL(3)

command line option, 42
RCNTRL(4)

command line option, 42
RCNTRL(5)

command line option, 43

89

RCNTRL(6)
command line option, 43

RCNTRL(7)
command line option, 43

RCNTRL(8)
command line option, 43

RCNTRL(9)
command line option, 43

RSTATUS(1)
command line option, 62

RSTATUS(2)
command line option, 63

RSTATUS(3)
command line option, 63

RSTATUS(4)
command line option, 63

RSTATUS(5)
command line option, 63

S
site-lisp/

command line option, 65
src/

command line option, 63

U
util/

command line option, 64

90

	KPP revision history
	KPP 3.1.1
	KPP 3.1.0
	KPP 3.0.2
	KPP 3.0.1
	KPP 3.0.0
	KPP 2.6.0
	KPP 2.5.0
	KPP 2.4.0
	KPP 2.3.2_gc
	KPP 2.3.1_gc
	KPP 2.3.0_gc
	KPP 2.2.5_gc
	KPP 2.2.4_gc
	KPP 2.2.3
	KPP 2.1
	KPP 1.1-f90-alpha12

	Installation
	Download KPP from Github
	Define the KPP_HOME environment variable
	Test if KPP dependencies are installed on your system
	gcc
	sed
	bison
	flex

	Build the KPP executable
	Instructions for MacOS X users
	Force MacOS to recognize the gcc compiler
	Install flex with homebrew
	Request maximum stack memory
	Know that MacOS X is case-insenstive

	Running KPP with an example stratospheric mechanism
	1. Create a directory for the example
	2. Create a KPP Definition File
	#MODEL small_strato
	#LANGUAGE Fortran90
	#INTEGRATOR rosenbrock
	#DRIVER general

	3. Build the mechanism with KPP
	4. Build and run the small_strato example
	5. Cleanup

	Input for KPP
	KPP sections
	#ATOMS
	#CHECK
	#DEFVAR and #DEFFIX
	#EQUATIONS
	#FAMILIES
	#INITVALUES
	#LOOKAT and #MONITOR
	#SETVAR and #SETFIX

	KPP commands
	#AUTOREDUCE
	#DECLARE
	#DOUBLE
	#DRIVER
	#DUMMYINDEX
	#EQNTAGS
	#FUNCTION
	#HESSIAN
	#INCLUDE
	#INTEGRATOR
	#INTFILE
	#JACOBIAN
	#LANGUAGE
	#MEX
	#MINVERSION
	#MODEL
	#REORDER
	#STOCHASTIC
	#STOICMAT
	#CHECKALL, #LOOKATALL
	#UPPERCASEF90

	Inlined Code
	List of inlined types
	F90_DATA
	F90_GLOBAL
	F90_INIT
	F90_RATES
	F90_RCONST
	F90_UTIL

	Auxiliary files and the substitution preprocessor
	List of auxiliary files for Fortran90
	List of symbols replaced by the substitution preprocessor

	Controlling the Integrator with ICNTRL and RCNTRL
	ICNTRL
	RCNTRL

	Output from KPP
	The Fortran90 code
	ROOT_Main
	ROOT_Model
	ROOT_Initialize
	ROOT_Integrator
	ROOT_Monitor
	ROOT_Precision
	ROOT_Rates
	ROOT_Parameters
	ROOT_Global
	ROOT_Function
	ROOT_Jacobian and ROOT_JacobianSP
	ROOT_Hessian and ROOT_HessianSP
	ROOT_LinearAlgebra
	ROOT_Stoichiom and ROOT_StoichiomSP
	ROOT_Stochastic
	ROOT_Util
	ROOT_mex_Fun, ROOT_mex_Jac_SP, and ROOT_mex_Hessian

	The C code
	The Matlab code
	The Makefile
	The log file
	Output from the Integrators (ISTATUS and RSTATUS)
	ISTATUS
	RSTATUS

	Information for KPP developers
	KPP directory structure
	KPP environment variables
	KPP internal modules
	Scanner and parser
	Species reordering
	Expression trees computation
	Code generation

	Adding new KPP commands
	Continuous integration tests
	List of continuous integration tests
	Running continuous integration tests on Azure DevOps Pipelines
	Running continuous integration tests locally

	Numerical methods
	Rosenbrock methods
	ROS-2
	ROS-3
	ROS-4
	RODAS-3
	RODAS-4
	Rosenbrock tangent linear model
	Rosenbrock discrete adjoint model
	Rosenbrock with mechanism auto-reduction

	Runge-Kutta (aka RK) methods
	3-stage Runge-Kutta
	RADAU5
	SDIRK
	SDIRK4
	SEULEX
	RK tangent linear model
	RK discrete adjoint model

	Backward differentiation formulas
	LSODE
	VODE
	BEULER

	Other integration methods
	FEULER

	BNF description of the KPP language
	Acknowledgements
	References
	Known Bugs
	Support
	Contributing
	Editing this User Guide
	Quick start
	Learning reST
	Style guidelines

	References
	Index

