References

Atkinson et al., 2004

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J. Evaluated kinetic and photochemical data for atmospheric chemistry: volume I – gas phase reactions of Ox, HOx, NOx, and SOx species. Atmos. Chem. Phys., 4:1461–1738, 2004. doi:10.5194/ACP-4-1461-2004.

Brown Byrne and Hindmarsh 1989

Brown, P. N., Byrne, G. D., and Hindmarsh, A. C. VODE: a variable step ode solver. SIAM J. Sci. Stat. Comput., 10:1038–1051, 1989.

Damian-Iordache 1996

Damian-Iordache, V. KPP – chemistry simulation development environment. Master's thesis, University of Iowa, USA, 1996.

Hairer Norsett and Wanner 1987

Hairer, E., Norsett, S. P., and Wanner, G. Solving Ordinary Differential Equations I. Nonstiff Problems. Springer-Verlag, Berlin, 1987.

Hairer and Wanner 1991

Hairer, E. and Wanner, G. Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems. Springer-Verlag, Berlin, 1991.

Lin et al., 2022

Lin, H., Long, M. S., Sander, R., Sandu, A., Yantosca, R. M., Estrada, L. A., Shen, L., and Jacob, D. J. An adaptive auto-reduction solver for speeding up integration of chemical kinetics in atmospheric chemistry models: implementation and evaluation within the kinetic pre-processor (KPP) version 3.0.0. J. Adv. Model. Earth Syst., pages 2022MS003293, 2023. doi:10.1029/2022MS003293.

Radhakrishnan and Hindmarsh 1993

Radhakrishnan, K. and Hindmarsh, A. Description and use of LSODE, the Livermore solver for differential equations. NASA reference publication 1327, 1993.

Sander et al., 2005

Sander, R., Kerkweg, A., Jöckel, P., and Lelieveld, J. Technical note: the new comprehensive atmospheric chemistry module MECCA. Atmos. Chem. Phys., 5:445–450, 2005. doi:10.5194/ACP-5-445-2005.

Sandu et al., 1996

Sandu, A., Potra, F. A., Damian, V., and Carmichael, G. R. Efficient implementation of fully implicit methods for atmospheric chemistry. J. Comput. Phys., 129:101–110, 1996.

Sandu and Sander 2006

Sandu, A. and Sander, R. Technical note: simulating chemical systems in fortran90 and matlab with the kinetic preprocessor kpp-2.1. Atmos. Chem. Phys., 6:187–195, 2006. doi:10.5194/ACP-6-187-2006.

Sandu et al., 1997b

Sandu, A., Verwer, J. G., Blom, J. G., Spee, E. J., Carmichael, G. R., and Potra, F. A. Benchmarking stiff ODE solvers for atmospheric chemistry problems II: Rosenbrock solvers. Atmos. Environ., 31:3459–3472, 1997. doi:10.1016/S1352-2310(97)83212-8.

Santillana et al., 2010

Santillana, M., Le Sager, P., Jacob, D. J., and Brenner, M. P. An adaptive reduction algorithm for efficient chemical calculations in global atmospheric chemistry models. Atmos. Environ., 44(35):4426–4431, 2010. doi:10.1016/j.atmosenv.2010.07.044.

Shen et al., 2020

Shen, L., Jacob, D. J., Santillana, M., Wang, X., and Chen, W. An adaptive method for speeding up the numerical integration of chemical mechanisms in atmospheric chemistry models: application to GEOS-Chem version 12.0.0. Geosci. Model Dev., 13:2475–2486, 2020. doi:10.5194/gmd-13-2475-2020.

Verwer et al., 1999

Verwer, J., Spee, E. J., Blom, J. G., and Hunsdorfer, W. A second order rosenbrock method applied to photochemical dispersion problems. SIAM Journal on Scientific Computing, 20:1456–1480, 1999.