References
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J. Evaluated kinetic and photochemical data for atmospheric chemistry: volume I – gas phase reactions of Ox, HOx, NOx, and SOx species. Atmos. Chem. Phys., 4:1461–1738, 2004. doi:10.5194/ACP-4-1461-2004.
Brown, P. N., Byrne, G. D., and Hindmarsh, A. C. VODE: a variable step ode solver. SIAM J. Sci. Stat. Comput., 10:1038–1051, 1989.
Damian-Iordache, V. KPP – chemistry simulation development environment. Master's thesis, University of Iowa, USA, 1996.
Hairer, E., Norsett, S. P., and Wanner, G. Solving Ordinary Differential Equations I. Nonstiff Problems. Springer-Verlag, Berlin, 1987.
Hairer, E. and Wanner, G. Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems. Springer-Verlag, Berlin, 1991.
Lin, H., Long, M. S., Sander, R., Sandu, A., Yantosca, R. M., Estrada, L. A., Shen, L., and Jacob, D. J. An adaptive auto-reduction solver for speeding up integration of chemical kinetics in atmospheric chemistry models: implementation and evaluation within the kinetic pre-processor (KPP) version 3.0.0. J. Adv. Model. Earth Syst., pages 2022MS003293, 2023. doi:10.1029/2022MS003293.
Radhakrishnan, K. and Hindmarsh, A. Description and use of LSODE, the Livermore solver for differential equations. NASA reference publication 1327, 1993.
Sander, R., Kerkweg, A., Jöckel, P., and Lelieveld, J. Technical note: the new comprehensive atmospheric chemistry module MECCA. Atmos. Chem. Phys., 5:445–450, 2005. doi:10.5194/ACP-5-445-2005.
Sandu, A., Potra, F. A., Damian, V., and Carmichael, G. R. Efficient implementation of fully implicit methods for atmospheric chemistry. J. Comput. Phys., 129:101–110, 1996.
Sandu, A. and Sander, R. Technical note: simulating chemical systems in fortran90 and matlab with the kinetic preprocessor kpp-2.1. Atmos. Chem. Phys., 6:187–195, 2006. doi:10.5194/ACP-6-187-2006.
Sandu, A., Verwer, J. G., Blom, J. G., Spee, E. J., Carmichael, G. R., and Potra, F. A. Benchmarking stiff ODE solvers for atmospheric chemistry problems II: Rosenbrock solvers. Atmos. Environ., 31:3459–3472, 1997. doi:10.1016/S1352-2310(97)83212-8.
Santillana, M., Le Sager, P., Jacob, D. J., and Brenner, M. P. An adaptive reduction algorithm for efficient chemical calculations in global atmospheric chemistry models. Atmos. Environ., 44(35):4426–4431, 2010. doi:10.1016/j.atmosenv.2010.07.044.
Shen, L., Jacob, D. J., Santillana, M., Wang, X., and Chen, W. An adaptive method for speeding up the numerical integration of chemical mechanisms in atmospheric chemistry models: application to GEOS-Chem version 12.0.0. Geosci. Model Dev., 13:2475–2486, 2020. doi:10.5194/gmd-13-2475-2020.
Verwer, J., Spee, E. J., Blom, J. G., and Hunsdorfer, W. A second order rosenbrock method applied to photochemical dispersion problems. SIAM Journal on Scientific Computing, 20:1456–1480, 1999.